
SPINTRONIC TECHNOLOGY & ADVANCE RESEARCH
 (STAR)
 Bhubaneswar

LAXMI NARAYAN SITH
 Asst. Professor
 EEE

SOFT COMPUTING
 7th Semester
 ALL BRANCH

B.Tech(Electrical and ElectronicsEngineering) Syllabus from Admission Batch 2018-19 7th Semester

Module I: (14 Hrs)
Basic tools of soft Computing: Fuzzy logic, Neural Networks and Evolutionary Computing,
Approximations of Multivariate functions, Non - linear Error surface and optimization

Fuzzy Logic Systems: Basics of fuzzy logic theory, Crisp and fuzzy sets; Basic set operations;
Fuzzy relations, Composition of Fuzzy relations, Fuzzy inference, Zadeh's compositional rule of
inference; Defuzzification; Fuzzy logic control; Mamdani and Takagi and Sugeno architectures.
Applications to pattern recognition.

Module II: (14 Hrs)

Neural networks: Single layer networks, Perceptron; Activation functions; Adaline- its training and
capabilities, weights learning, Multilayer perceptrons; error back propagation, generalized delta
rule; Radial basis function networks and least square training algorithm, Kohenen self - organizing
map and learning vector quantization networks; Recurrent neural networks, Simulated annealing
neural networks; Adaptive neuro-fuzzy information; systems (ANFIS).

Module III: (8 Hrs)

Evolutionary Computing: Genetic algorithms: Basic concepts, encoding, fitness function,
reproduction. Differences of GA and traditional optimization methods. Basic genetic, basic
evolutionary programming concepts Applications, hybrid evolutionary algorithms.

Books:

1. F. O. Karry and C. de Silva, "Soft Computing and Intelligent Systems Design - Theory,
Tools and Applications". Pearson Education.(Printed in India).

2. J. S. R. Jang. C. T. Sun and E. Mizutani, "Neuro-fuzzy and soft-computing". PHI Pvt. Ltd.,
New Delhi.

3. Fredric M. Ham and Ivica Kostanic, "Principle of Neuro Computing for Science and
Engineering", Tata McGraw Hill.

4. S. Haykins, "Neural networks: a comprehensive foundation". Pearson Education, India. 4)
V. Keeman,"Learning and Soft computing", Pearson Education, India.

5. R. C. Eberhart and Y. Shi, "Computational Intelligence Concepts to Implementation".
Morgan Kaufmann Publishers (Indian Reprint).

7th
Semester

RCS7D007 Soft Computing L-T-P
3-0-0

3
CREDITS

MODULE-I (10 HOURS)

Introduction to Neuro, Fuzzy and Soft Computing, Fuzzy Sets : Basic Definition and Terminology,
Set-theoretic Operations, Member Function Formulation and Parameterization, Fuzzy Rules and
Fuzzy Reasoning, Extension Principle and Fuzzy Relations, Fuzzy If-Then Rules, Fuzzy Reasoning ,
Fuzzy Inference Systems, Mamdani Fuzzy Models, Sugeno Fuzzy Models, Tsukamoto Fuzzy Models,
Input Space Partitioning and Fuzzy Modeling.

LECTURE-1

INTRODUCTION:

What is intelligence?

Real intelligence is what determines the normal thought process of a human.

Artificial intelligence is a property of machines which gives it ability to mimic the human

thought process. The intelligent machines are developed based on the intelligence of a

subject, of a designer, of a person, of a human being. Now two questions: can we construct a

control system that hypothesizes its own control law? We encounter a plant and looking at

the plant behavior, sometimes, we have to switch from one control system to another control

system where the plant is operating. The plant is may be operating in a linear zone or non-

linear zone; probably an operator can take a very nice intelligent decision about it, but can a

machine do it? Can a machine actually hypothesize a control law, looking at the model? Can

we design a method that can estimate any signal embedded in a noise without assuming any

signal or noise behavior?

That is the first part; before we model a system, we need to observe. That is we collect certain
data from the system and How do we actually do this? At the lowest level, we have to sense
the environment, like if I want to do temperature control I must have temperature sensor.
This data is polluted or corrupted by noise. How do we separate the actual data from the
corrupted data? This is the second question. The first question is that can a control system be
able to hypothesize its own control law? These are very important questions that we should
think of actually. Similarly, also to represent knowledge in a world model, the way we
manipulate the objects in this world and the advanced is a very high level of intelligence that
we still do not understand; the capacity to perceive and understand.

What is AI ?
Artificial Intelligence is concerned with the design of intelligence in an artificial device.

The term was coined by McCarthy in 1956.

There are two ideas in the definition.

1. Intelligence

2. artificial device

What is intelligence?

– Is it that which characterize humans? Or is there an absolute standard of judgement?

– Accordingly there are two possibilities:

– A system with intelligence is expected to behave as intelligently as a human

– A system with intelligence is expected to behave in the best possible manner

– Secondly what type of behavior are we talking about?

– Are we looking at the thought process or reasoning ability of the system?

– Or are we only interested in the final manifestations of the system in terms of its

actions?

Given this scenario different interpretations have been used by different researchers as defining

the scope and view of Artificial Intelligence.

1. One view is that artificial intelligence is about designing systems that are as intelligent as

humans. This view involves trying to understand human thought and an effort to build

machines that emulate the human thought process. This view is the cognitive science approach

to AI.

2. The second approach is best embodied by the concept of the Turing Test. Turing held that in

future computers can be programmed to acquire abilities rivaling human intelligence. As part

of his argument Turing put forward the idea of an 'imitation game', in which a human being

and a computer would be interrogated under conditions where the interrogator would not

know which was which, the communication being entirely by textual messages. Turing argued

that if the interrogator could not distinguish them by questioning, then it would be

unreasonable not to call the computer intelligent. Turing's 'imitation game' is now usually

called 'the Turing test' for intelligence.

3. Logic and laws of thought deals with studies of ideal or rational thought process and inference.

The emphasis in this case is on the inferencing mechanism, and its properties. That is how the

system arrives at a conclusion, or the reasoning behind its selection of actions is very

important in this point of view. The soundness and completeness of the inference mechanisms

are important here.

4. The fourth view of AI is that it is the study of rational agents. This view deals with building

machines that act rationally. The focus is on how the system acts and performs, and not so

much on the reasoning process. A rational agent is one that acts rationally, that is, is in the best

possible manner.

Typical AI problems
While studying the typical range of tasks that we might expect an “intelligent entity” to perform,

we need to consider both “common-place” tasks as well as expert tasks.

Examples of common-place tasks include

– Recognizing people, objects.

– Communicating (through natural language).

– Navigating around obstacles on the streets

These tasks are done matter of factly and routinely by people and some other animals.

Expert tasks include:

• Medical diagnosis.

• Mathematical problem solving

• Playing games like chess

These tasks cannot be done by all people, and can only be performed by skilled specialists.

Now, which of these tasks are easy and which ones are hard? Clearly tasks of the first type are

easy for humans to perform, and almost all are able to master them. However, when we look at

what computer systems have been able to achieve to date, we see that their achievements include

performing sophisticated tasks like medical diagnosis, performing symbolic integration, proving

theorems and playing chess.

On the other hand it has proved to be very hard to make computer systems perform many routine

tasks that all humans and a lot of animals can do. Examples of such tasks include navigating our

way without running into things, catching prey and avoiding predators. Humans and animals are

also capable of interpreting complex sensory information. We are able to recognize objects and

people from the visual image that we receive. We are also able to perform complex social

functions.

Intelligent behaviour
This discussion brings us back to the question of what constitutes intelligent behaviour. Some of

these tasks and applications are:

1. Perception involving image recognition and computer vision

2. Reasoning

3. Learning

4. Understanding language involving natural language processing, speech processing

5. Solving problems

6. Robotics

Practical applications of AI
AI components are embedded in numerous devices e.g. in copy machines for automatic

correction of operation for copy quality improvement. AI systems are in everyday use for

identifying credit card fraud, for advising doctors, for recognizing speech and in helping complex

planning tasks. Then there are intelligent tutoring systems that provide students with personalized

attention.

Thus AI has increased understanding of the nature of intelligence and found many applications. It

has helped in the understanding of human reasoning, and of the nature of intelligence. It has also

helped us understand the complexity of modeling human reasoning.

Approaches to AI
Strong AI aims to build machines that can truly reason and solve problems. These machines

should be self aware and their overall intellectual ability needs to be indistinguishable from that

of a human being. Excessive optimism in the 1950s and 1960s concerning strong AI has given

way to an appreciation of the extreme difficulty of the problem. Strong AI maintains that suitably

programmed machines are capable of cognitive mental states.

Weak AI: deals with the creation of some form of computer-based artificial intelligence that

cannot truly reason and solve problems, but can act as if it were intelligent. Weak AI holds that

suitably programmed machines can simulate human cognition.

Applied AI: aims to produce commercially viable "smart" systems such as, for example, a

security system that is able to recognise the faces of people who are permitted to enter a particular

building. Applied AI has already enjoyed considerable success.

Cognitive AI: computers are used to test theories about how the human mind works--for example,

theories about how we recognise faces and other objects, or about how we solve abstract

problems.

Limits of AI Today
Today‟s successful AI systems operate in well-defined domains and employ narrow, specialized

knowledge. Common sense knowledge is needed to function in complex, open-ended worlds.

Such a system also needs to understand unconstrained natural language. However these

capabilities are not yet fully present in today‟s intelligent systems.

What can AI systems do

Today‟s AI systems have been able to achieve limited success in some of these tasks.

• In Computer vision, the systems are capable of face recognition

• In Robotics, we have been able to make vehicles that are mostly autonomous.

• In Natural language processing, we have systems that are capable of simple machine

translation.

• Today‟s Expert systems can carry out medical diagnosis in a narrow domain

• Speech understanding systems are capable of recognizing several thousand words continuous

speech

• Planning and scheduling systems had been employed in scheduling experiments with

the Hubble Telescope.

• The Learning systems are capable of doing text categorization into about a 1000 topics

• In Games, AI systems can play at the Grand Master level in chess (world champion), checkers,

etc.

What can AI systems NOT do yet?

• Understand natural language robustly (e.g., read and understand articles in a newspaper)

• Surf the web

• Interpret an arbitrary visual scene

• Learn a natural language

• Construct plans in dynamic real-time domains

• Exhibit true autonomy and intelligence

Applications:

We will now look at a few famous AI system that has been developed over the years.

1. ALVINN:

Autonomous Land Vehicle In a Neural Network

In 1989, Dean Pomerleau at CMU created ALVINN. This is a system which learns to control

vehicles by watching a person drive. It contains a neural network whose input is a 30x32 unit

two dimensional camera image. The output layer is a representation of the direction the

vehicle should travel.

The system drove a car from the East Coast of USA to the west coast, a total of about 2850

miles. Out of this about 50 miles were driven by a human, and the rest solely by the system.

2. Deep Blue

In 1997, the Deep Blue chess program created by IBM, beat the current world chess

champion, Gary Kasparov.

3. Machine translation

A system capable of translations between people speaking different languages will be a

remarkable achievement of enormous economic and cultural benefit. Machine translation is

one of the important fields of endeavour in AI. While some translating systems have been

developed, there is a lot of scope for improvement in translation quality.

4. Autonomous agents

In space exploration, robotic space probes autonomously monitor their surroundings, make

decisions and act to achieve their goals.

NASA's Mars rovers successfully completed their primary three-month missions in April,

2004. The Spirit rover had been exploring a range of Martian hills that took two months to

reach. It is finding curiously eroded rocks that may be new pieces to the puzzle of the region's

past. Spirit's twin, Opportunity, had been examining exposed rock layers inside a crater.

5. Internet agents

The explosive growth of the internet has also led to growing interest in internet agents to

monitor users' tasks, seek needed information, and to learn which information is most useful

What is soft computing?

An approach to computing which parallels the remarkable ability of the human mind to
reason and learn in an environment of uncertainty and imprecision.

It is characterized by the use of inexact solutions to computationally hard tasks such as the
solution of nonparametric complex problems for which an exact solution can‟t be derived in
polynomial of time.

Why soft computing approach?

Mathematical model & analysis can be done for relatively simple systems. More complex
systems arising in biology, medicine and management systems remain intractable to
conventional mathematical and analytical methods. Soft computing deals with imprecision,
uncertainty, partial truth and approximation to achieve tractability, robustness and low
solution cost. It extends its application to various disciplines of Engg. and science. Typically
human can:

1. Take decisions
2. Inference from previous situations experienced
3. Expertise in an area
4. Adapt to changing environment
5. Learn to do better
6. Social behaviour of collective intelligence

Intelligent control strategies have emerged from the above mentioned characteristics of
human/ animals. The first two characteristics have given rise to Fuzzy logic;2

nd
 , 3

rd
 and 4

th

have led to Neural Networks; 4
th

 , 5
th

 and 6
th

 have been used in evolutionary algorithms.

Characteristics of Neuro-Fuzzy & Soft Computing:

1. Human Expertise
2. Biologically inspired computing models
3. New Optimization Techniques
4. Numerical Computation
5. New Application domains
6. Model-free learning
7. Intensive computation
8. Fault tolerance
9. Goal driven characteristics
10. Real world applications

Intelligent Control Strategies (Components of Soft Computing): The popular soft computing
components in designing intelligent control theory are:

1. Fuzzy Logic
2. Neural Networks
3. Evolutionary Algorithms

Fuzzy logic:

Most of the time, people are fascinated about fuzzy logic controller. At some point of time in
Japan, the scientists designed fuzzy logic controller even for household appliances like a
room heater or a washing machine. Its popularity is such that it has been applied to various
engineering products.

Fuzzy number or fuzzy variable:

We are discussing the concept of a fuzzy number. Let us take three statements: zero, almost

zero, near zero. Zero is exactly zero with truth value assigned 1. If it is almost 0, then I can

think that between minus 1 to 1, the values around 0 is 0, because this is almost 0. I am not

very precise, but that is the way I use my day to day language in interpreting the real world.

When I say near 0, maybe the bandwidth of the membership which represents actually the

truth value. You can see that it is more, bandwidth increases near 0. This is the concept of

fuzzy number. Without talking about membership now, but a notion is that I allow some

small bandwidth when I say almost 0. When I say near 0 my bandwidth still further increases.

In the case minus 2 to 2, when I encounter any data between minus 2 to 2, still I will consider

them to be near 0. As I go away from 0 towards minus 2, the confidence level how near they

are to 0 reduces; like if it is very near to 0, I am very certain. As I progressively go away

from 0, the level of confidence also goes down, but still there is a tolerance limit. So when

zero I am precise, I become imprecise when almost and I further become more imprecise in

the third case.

When we say fuzzy logic, that is the variables that we encounter in physical devices, fuzzy
numbers are used to describe these variables and using this methodology when a controller is
designed, it is a fuzzy logic controller.

Neural networks :

Neural networks are basically inspired by various way of observing the biological organism.
Most of the time, it is motivated from human way of learning. It is a learning theory. This is
an artificial network that learns from example and because it is distributed in nature, fault
tolerant, parallel processing of data and distributed structure.

The basic elements of artificial Neural Network are: input nodes, weights, activation function
and output node. Inputs are associated with synaptic weights. They are all summed and
passed through an activation function giving output y. In a way, output is summation of the
signal multiplied with synaptic weight over many input channels.

Fig. Basic elements of an artificial neuron

Fig. Analogy of biological neuron and artificial neuron

Above fig. Shows a biological neuron on top. Through axon this neuron actuates the signal
and this signal is sent out through synapses to various neurons. Similarly shown a classical
artificial neuron(bottom).This is a computational unit. There are many inputs reaching this.
The input excites this neuron. Similarly, there are many inputs that excite this computational
unit and the output again excites many other units like here. Like that taking certain concepts
in actual neural network, we develop these artificial computing models having similar
structure.

There are various locations where various functions take place in the brain.

If we look at a computer and a brain, this is the central processing unit and a brain. Let us

compare the connection between our high speed computers that are available in the market

today and a brain. Approximately there are 10 to the power of 14 synapses in the human

brain, whereas typically you will have 10 to the power of 8 transistors inside a CPU. The

element size is almost comparable, both are 10 to the power minus 6 and energy use is almost

like 30 Watts and comparable actually; that is energy dissipated in a brain is almost same as

in a computer. But you see the processing speed. Processing speed is only 100 hertz; our

brain is very slow, whereas computers nowadays, are some Giga hertz.

When you compare this, you get an idea that although computer is very fast, it is very slow to

do intelligent tasks like pattern recognition, language understanding, etc. These are certain

activities which humans do much better, but with such a slow speed, 100 Hz. ….. contrast

between these two, one of the very big difference between these two is the structure; one is

brain, another is central processing unit is that the brain learns, we learn. Certain mapping

that is found in biological brain that we have studied in neuroscience is not there in a central

processing unit and we do not know whether self awareness takes place in the brain or

somewhere else, but we know that in a computer there is no self-awareness.

Neural networks are analogous to adaptive control concepts that we have in control theory
and one of the most important aspects of intelligent control is to learn the control parameters,
to learn the system model. Some of the learning methodologies we will be learning here is the
error-back propagation algorithm, real-time learning algorithm for recurrent network,
Kohonen‟s self organizing feature map & Hopfield network.

Features of Artificial Neural Network (ANN) models:

1. Parallel Distributed information processing
2. High degree of connectivity between basic units
3. Connections are modifiable based on experience
4. Learning is a continuous unsupervised process
5. Learns based on local information
6. Performance degrades with less units

All the methods discussed so far makes a strong assumption about the space around; that
is, when we use whether a neural network or fuzzy logic or …. and .… any method that may
have been adopted in intelligent control framework, they all make always very strong
assumptions and normally they cannot work in a generalized condition. The question is that
can they hypothesize a theory? When I design all these controllers, I always take the data; the
engineer takes the data. He always builds these models that are updated. They update their
own weights based on the feedback from the plant. But the structure of the controller, the
model by which we assume the physical plant, all these are done by the engineer and also the
structure of the intelligent controller is also decided by the engineer. We do not have a
machine that can hypothesize everything; the model it should select, the controller it should
select, looking at simply data. As it encounters a specific kind of data from a plant can it
come up with specific controller architecture and can it come up with specific type of system
model? That is the question we are asking now.

You will see that in the entire course we will be discussing various tools. They will only be
dealing with these two things; behaviour. These tools are actually developed by mimicking
the human behavior, but not the human way of working. An intelligent machine is one which
learns, thinks and behaves in line with the thought process. That we would like but we are
very far from it. At least, at the moment, we are very far from this target of achieving real
intelligence.

We perceive the environment in a very unique way, in a coherent manner. This is called unity

of perception and intelligence has also something to do with this unity of perception,

awareness and certain things are not very clear to us until now. So an intelligent machine is

one which learns, thinks & behaves in line with thought process.

Evolutionary algorithms:

These are mostly derivative free optimization algorithms that perform random search in a
systematic manner to optimize the solution to a hard problem. In this course Genetic
Algorithm being the first such algorithm developed in 1970‟s will be discussed in detail. The
other algorithms are swarm based that mimic behaviour of organisms, or any systematic
process.

LECTURE-2

Fuzzy Sets Basic Concepts

 Characteristic Function (Membership Function)

 Notation

 Semantics and Interpretations

 Related crisp sets

 Support, Bandwidth, Core, α-level cut

 Features, Properties, and More Definitions

 Convexity, Normality

 Cardinality, Measure of Fuzziness

 MF parametric formulation

 Fuzzy Set-theoretic Operations

 Intersection, Union, Complementation
 T-norms and T-conorms

 Numerical Examples
 Fuzzy Rules and Fuzzy Reasoning
 Extension Principle and Fuzzy Relations

 Fuzzy If-Then Rules

 Fuzzy Reasoning

 Fuzzy Inference Systems

 Mamdani Fuzzy Models

 Sugeno Fuzzy Models

 Tsukamoto Fuzzy Models

 Input Space Partitioning

 Fuzzy Modeling.

The father of fuzzy logic is Lotfi Zadeh who is still there, proposed in 1965. Fuzzy logic can

manipulate those kinds of data which are imprecise.

Basic definitions & terminology:

Fuzzy Number:

A fuzzy number is fuzzy subset of the universe of a numerical number that satisfies condition
of normality & convexity.It is the basic type of fuzzy set.

why fuzzy is used? Why we will be learning about fuzzy? The word fuzzy means that, in

general sense when we talk about the real world, our expression of the real world, the way we

quantify the real world, the way we describe the real world, are not very precise.

When I ask what your height is, nobody would say or nobody would expect you to know a

precise answer. If I ask a precise question, probably, you will give me your height as 5 feet 8

inches. But normally, when I see people, I would say this person is tall according to my own

estimate, my own belief and my own experience; or if I ask, what the temperature is today,

the normal answer people would give is, today it is very hot or hot or cool. Our expression

about the world around us is always not precise. Not to be precise is exactly what is fuzzy.

Fuzzy logic is logic which is not very precise. Since we deal with our world with this

imprecise way, naturally, the computation that involves the logic of impreciseness is much

more powerful than the computation that is being carried through a precise manner, or rather

precision logic based computation is inferior; not always, but in many applications, they are

very inferior in terms of technological application in our day to day benefits, the normal way.

Fuzzy logic has become very popular; in particular, the Japanese sold the fuzzy logic

controller, fuzzy logic chips in all kinds of house hold appliances in early 90‟s. Whether it is

washing machine or the automated ticket machine, anything that you have, the usual house

hold appliances, the Japanese actually made use of the fuzzy logic and hence its popularity

grew.

Fig. Difference in Fuzzy and crisp boundary

As fuzzy means from precision to imprecision. Here, when I say 10, I have an arrow at 10,

pointing that I am exactly meaning 10 means 10.00000 very precise. When I say they are all

almost 10, I do not mean only 10, rather in the peripheral 10. I can tolerate a band from minus

9 to 9, whereas if I go towards 9 or 11, I am going away from 10, the notion of 10. That is

what is almost 10, that is around 10, but in a small bandwidth, I still allow certain bandwidth

for 10.

This concept to be imprecise is fuzzy or to deal with the day to day data that we collect or we

encounter and representing them in an imprecise manner like here almost 0, near 0, or hot,

cold, or tall; if I am referring to height, tall, short medium. This kind of terminology that we

normally talk or exchange among ourselves in our communication actually deals with

imprecise data rather than precise data. Naturally, since our communications are imprecise,

the computation resulting out of such communication language, the language which is

imprecise must be associated with some logic.

Fig. Sets: classical & fuzzy boundary

Set: A collection of objects having one or more common characteristics. For example, set of
natural number, set of real numbers, members, or elements. Objects belonging to a set is
represented as x belonging to A, where A is a set.

Universe of Discourse:

Defined as “a collection of objects all having the same characteristics”.

Notation: U or X, and elements in the universe of discourse are: u or x

Now, we will be talking about fuzzy sets. When I talked about classical set, we had classical

set of the numbers that we know, like we talked about the set of natural numbers, set of real

numbers. What is the difference between a fuzzy set and a classical set or a crisp set? The

difference is that the members, they belong to a set A or a specific set A or B or X or Y,

whatever it is, we define them; but the degree of belonging to the set is imprecise. If I say, a

universal set in natural numbers, all the natural numbers fall in this set. If I take a subset of

this natural number, like in earlier case, we put 1 to 11 in one set. When I ask, whether 12

belongs to set A, the answer is no; 13 belongs to set A? The answer is no; because, in my

natural number set, only 1 to 11 are placed. This is called classical set and their

belongingness here is one. They all belong to this set.

But in a fuzzy set, I can have all the numbers in this set, but with a membership grade
associated with it. When I say membership grade is 0 that means, they do not belong to the
set, whereas a membership grade between 0 to 1, says how much this particular object may
belong to the set.

The nomenclature/ Notation of a fuzzy set - how do we represent a fuzzy set there? One

way is that let the elements of X be x1, x2, up to xn; then the fuzzy set A is denoted by any of

the following nomenclature.
Mainly 2 types:

1. Numeric

2. Functional

Mostly, we

will be using either this or the first one, where you see the ordered pair x

1 µ A x1; x1 is member of A and x1 is associated with a fuzzy index and so forth, x2 and its

fuzzy index, xn and its fuzzy membership. The same thing, I can also write x1 upon µ A x1.

That means x1 is the member and this is the membership. The other way is here, in the third

pattern the membership is put first and in the bottom the member x1 with a membership, x2

with membership and xn with membership.

Every member x of a fuzzy set A is assigned a fuzzy index. This is the membership grade µA

x in the interval of 0 to 1, which is often called as the grade of membership of x in A. In a

classical set, this membership grade is either 0 or 1; it either belongs to set A or does not

belong. But in a fuzzy set this answer is not precise, answer is, it is possible. It is belonging to

set A with a fuzzy membership 0.9 and I say it belongs to A with a fuzzy membership 0.1;

that is, when I say 0.9, more likely it belongs to set A. When I say 0.1, less likely it belongs

to set A. Fuzzy sets are a set of ordered pairs given by A. The ordered pair is x, where x is a

member of the set. Along with that, what is its membership grade and how likely the subject

belongs to set A? That is the level we put, where x is a universal set and µx is the grade of

membership of the object x in A. As we said, this membership µ.

A x lies between 0 to 1; so, more towards 1, we say more likely it belongs to A. Like if I say

membership grade is 1, certainly it belongs to A.

For an example: a set of all tall people. Tall if I define, classically I would say above 6 is tall
and below 6 is not tall; that is, 5.9, 5 feet 9 inches is not tall and 6.1, 6 feet 1 inch is tall. That
looks very weird; it does not look nice to say that a person who is 6 feet 1 inch is tall and 5
feet 9 inches is not tall. This ambiguity that we have in terms of defining such a thing in
classical set, the difficulty that we face can be easily resolved in fuzzy set. In fuzzy set, we
can easily say both 6.1, 6 feet 1 inch as well as 5.9 inches as tall, but level this difference;
they are tall, but with a membership grade associated with this. This is what fuzzy set is.

Membership function - a membership function µ A x is characterized by µ A that maps all

the members in set x to a number between 0 to 1, where x is a real number describing an

object or its attribute, X is the universe of discourse and A is a subset of X.

Fig. Fuzzy Sets with Discrete Universes

Fuzzy set A = “sensible number of children”

X = {0, 1, 2, 3, 4, 5, 6} (discrete universe)

A = {(0, .1), (1, .3), (2, .7), (3, 1), (4, .6), (5, .2), (6, .1)}--(See discrete ordered pairs)(1
st

expression)

or

Fig. Fuzzy Set with Cont. Universe

Fuzzy set B = “about 50 years old”

X = Set of positive real numbers (continuous)

B = {(x, µB(x)) | x in X}

µB(x)=f(x)

(2

nd
 expression –with function that is subjective)

3
rd

 expression of fuzzy set:

Linguistic variable and linguistic values:

Linguistic variable is a variable expressed in linguistic terms e.g. “Age” that assumes various

linguistic values like :middleaged, young, old. The linguistic variables are characterized by

membership functions.

Fig. A membership function showing support, bandwidth, core, crossover points

Support:

Support of a fuzzy set A is the set of all points x in X such that µA(x)>0.

Support (A)= {x| µA(x)>0}

Core:

The core of a fuzzy set A is the set of all poits x in X such that µA(x)=1

core (A)= {x| µA(x)=1}

Normality:

A fuzzy set A is normal if its core is nonempty. Always there is at least one x with µA(x)=1
then it is normal.

Crossover point:

A cross over point in fuzzy set A is the x with µA(x)=0.5

crossover (A)= {x| µA(x)=0.5}

Bandwidth:

For a normal & convex fuzzy set

Width(A)=|x2-x1|, where x2 & x1 are crossover points.

fuzzy singleton:

A fuzzy set whose support is a single point in X with µA(x)=1 is called a fuzzy singleton.

For the set given in figure we can find equivalence & write

Convexity:

Symmetry:

A fuzzy set is symmetric if its MF is symmetric about a certain point x=c such that,

µA(c+x)= µA(c-x) for all x in X

Comparison of the classical approach and fuzzy approach:

Let us say, consider a universal set T which stands for temperature. Temperature I can say

cold, normal and hot. Naturally, these are subsets of the universal set T; the cold temperature,

normal temperature and hot temperature they are all subsets of T.

The classical approach, probably, one way to define the classical set is cold. I define cold:

temperature T; temperature is a member of cold set which belongs to the universal set T such

that this temperature, the member temperature is between 5 degree and 15 degree centigrade.

Similarly, the member temperature belongs to normal, if it is between 15 degree centigrade

and 25 degree centigrade. Similarly, the member temperature belongs to hot set when the

temperature is between 25 degree centigrade and 35 degree centigrade. As I said earlier, one

should notice that 14.9 degree centigrade is cold according to this definition while 15.1

degree centigrade is normal implying the classical sets have rigid boundaries and because of

this rigidity, the expression of the world or the expression of data becomes very difficult. For

me, I feel or any one of us will feel very uneasy to say that 14.9 degrees centigrade is cold

and 15.1 degree centigrade is normal or for that matter, 24.9 degrees centigrade is normal and

25 degree or 25.1 degree centigrade is hot. That is a little weird or that is bizarre to have such

an approach to categorize things into various sets.

In a fuzzy set, it is very easy to represent them here. If the temperature is around 10 degree

centigrade, it is cold; temperature is around 20 degrees centigrade, it is normal and when

temperature is around 30 degree centigrade it is hot. In that sense, they do not have a rigid

boundary. If you say here, 25 degree centigrade, the 25 degree centigrade can be called

simultaneously hot as well as normal, with a fuzzy membership grade 0.5. 25 degrees

centigrade belongs to both normal as well as hot, but when I say 28 degree centigrade, this is

more likely a temperature in the category of hot, whereas the 22 degree centigrade is a

temperature that is more likely belonging to the set normal. This is a much nicer way to

represent a set. This is how the imprecise data can be categorized in a much nicer way using

fuzzy logic. This is the contrasting feature, why the fuzzy logic was introduced in the first

place.

Fuzzy sets have soft boundaries. I can say cold from almost 0 degree centigrade to 20 degree

centigrade. If 10 degree has a membership grade 1 and as I move away from 10 degree in

both directions, I lose the membership grade. The membership grade reduces from 1 to 0

here, and in this direction also from 1 to 0. The temperature, As I go, my membership grade

reduces; I enter into a different set simultaneously and that is normal. You can easily see, like

temperature 12, 13, 14, 15 all belong to both categories cold as well as normal, but each

member is associated with a membership grade; this is very important.

In a classical set, there are members in a set. Here, there are members in a set associated with

a fuzzy index or membership function.

LECTURE-3

Parameterization of Membership Function:

Once we talk about each member in a fuzzy set associated with membership function, you
must know how to characterize this membership function. The parameters are adjusted to fine
tune a fuzzy inference system to achieve desired I/O mapping. The membership functions
given here are one- dimensional. 2 dimensional MFs can be formed by cylindrical extension
from these basic MFs.

Where a<b<c & that are x coordinates of the corners of triangular MF

Where a<b<c<d & that are x coordinates of the corners of trapezoidal MF

Where c is the centre & a is adjusted to vary the width of MF, b controls slope at crossover

points.

Bell membership function is also termed as Cauchy MF.

Where c is the centre & Ϭ is the width of MF.

Left-Right MF:

Sigmoidal MF:

It can be open left or open right depending on sign of a.

Fig. Membership functions a. Triangle b. Trapezoidal c. Gaussian d. Bell, e. Left f. Right

LECTURE-4

Fuzzy set operations:

The main features of operation on fuzzy set are that unlike conventional sets, operations on
fuzzy sets are usually described with reference to membership function. When I say
operation, I do not do with the member itself, but I manipulate. When I say operation, I
manipulate the membership of the members in a set; members are not manipulated, rather the
membership function of the member is manipulated. This is very important; that is, x and µ(
x). In classical set what is manipulated is x.

If I say, x is 1 In classical set when I say x is 1 then, I would say 1 minus x is 0. In this, the

manipulation concerns with the member; whereas any kind of manipulation in fuzzy set does

not involve with x; rather it involves µx.

Containment or subset:

Three common operations: intersection which we say is the minimum function, union, which

we say is the maximum function and then fuzzy complementation

Standard fuzzy operations:

Intersection(Conjunction)or T-norm:

We can easily see that, the membership of A (green) intersection B(red) in fig. is all the

members that belongs to, that is common between A and B. Their membership will follow

these (blue) curves. There are two things we are doing. We have 2 sets. One is set A and the

other is set B. Classically, what we see is the common members between A and B. We are

not only seeing the common members, here we are also seeing, what is their membership

function.

Fig. Fuzzy set operations intersection & union

The membership function is computed minimum; that is, µA intersection B is minimum of

µA x and µ B x. That is the membership function. When there is a common member between

A and B, the membership function wherever is minimum that is retained and the other one is

thrown away. The member is retained; what is changing is the membership function.

Union(Disjunction) or T-co-norm or S-norm:

That is the meaning of these two curves that we have and then we are trying to find out what
the fuzzy union is. I have to find out In this the members are both belonging to A and B. But
their membership is maximum of both. if I have common members. I have set A and I have
set B; A union B is my union set. If x belongs to A and x belongs to B, then x also belongs to
A union B. But in fuzzy set, here this is µ

A
x and here it is µ

x and in this case, this is

maximum of µ
A

x and µ
B

x; the membership function. That is the way it is assigned.

This candidate, when it comes to A union B take these two values of membership, find the
maximum which is 0.1 and assign here, which is 0.1. This is, µ

union

B
is 0.1. This is the

meaning. This is a very important operation that we do. When we have two different fuzzy
sets, the operations are classical. The manipulation is among the membership functions;
otherwise, the notion of the classical fuzzy operation also remains intact, except that the
associated fuzzy membership gets changed.

Complement(Negation):

now it is fuzzy complementation. What is complement? This one, this particular triangular

function is my set R(red); fuzzy set R. The complement is like this; just inverse (blue). What

is 1 minus µ
A

x; meaning 1 minus µ
A

x.

 Fig. Complement of fuzzy set

What is seen that the members remain intact in the set A, whereas the associated membership

functions got changed.

The other operations that we know for classical sets like De Morgan‟s law, the difference also
can be used for the sets like De Morgan‟s law.

Properties/ identities of fuzzy sets:

They are commutative. A union B is B union A; A intersection B is B intersection A. It is like

classical sets; fuzzy sets equally hold.

Associativity; A union B union C is A union B union C. Similarly, A union bracket B union

C is A intersection B intersection C is A intersection B combined with intersection C.

Distributivity: you can easily see that A union B intersection C is A union B intersection A

union C which is here. Similarly, here A intersection B union A intersection C. So, this is

distributivity.

Idempotency which is A union A is A and A intersection A is A.

Identity: A union null set is A, A intersection universal set is A, A intersection null set is null

and A union universal set is universal set X; here, X represents universal set.

The next step in establishing a complete system of fuzzy logic is to define the operations of

EMPTY, EQUAL, COMPLEMENT (NOT), CONTAINMENT, UNION (OR), and

INTERSECTION (AND). Before we can do this rigorously, we must state some formal

definitions:

Definition 1: Let X be some set of objects, with elements noted as x. Thus,

X = {x}.

Definition 2: A fuzzy set A in X is characterized by a membership function

mA(x) which maps each point in X onto the real interval [0.0, 1.0]. As

mA(x) approaches 1.0, the "grade of membership" of x in A increases.

Definition 3: A is EMPTY iff for all x, µA(x) = 0.0.

Definition 4: A = B iff for all x: µA(x) = µB(x) [or, µA = µB].

Definition 5: µA' = 1 - µA.

Definition 6: A is CONTAINED in B iff µA <= µB.

Definition 7: C = A UNION B, where: µC(x) = MAX(µA(x), µB(x)).

Definition 8: C = A INTERSECTION B where: µC(x) = MIN(µA(x), µB(x)).

Difference probability & fuzzy operations:

It is important to note the last two operations, UNION (OR) and INTERSECTION (AND),

which represent the clearest point of departure from a probabilistic theory for sets to fuzzy

sets. Operationally, the differences are as follows:

For independent events, the probabilistic operation for AND is multiplication, which (it can

be argued) is counterintuitive for fuzzy systems. For example, let us presume that x = Bob, S

is the fuzzy set of smart people, and T is the fuzzy set of tall people. Then, if µS(x) = 0.90

and µT(x) = 0.90, the probabilistic result would be:

µS(x) * µT(x) = 0.81

whereas the fuzzy result would be:

MIN(µS(x), µT(x)) = 0.90

The probabilistic calculation yields a result that is lower than either of the two initial values,

which when viewed as "the chance of knowing" makes good sense. However, in fuzzy terms

the two membership functions would read something like "Bob is very smart" and "Bob is

very tall." If we presume for the sake of argument that "very" is a stronger term than "quite,"

and that we would correlate "quite" with the value 0.81, then the semantic difference

becomes obvious. The probabilistic calculation would yield the statement If Bob is very

smart, and Bob is very tall, then Bob is a quite tall, smart person. The fuzzy calculation,

however, would yield If Bob is very smart, and Bob is very tall, then Bob is a very tall, smart

person.

Another problem arises as we incorporate more factors into our equations (such as the fuzzy

set of heavy people, etc.). We find that the ultimate result of a series of AND's approaches

0.0, even if all factors are initially high. Fuzzy theorists argue that this is wrong: that five

factors of the value 0.90 (let us say, "very") AND'ed together, should yield a value of 0.90

(again, "very"), not 0.59 (perhaps equivalent to "somewhat").

Similarly, the probabilistic version of A OR B is (A+B - A*B), which approaches 1.0 as

additional factors are considered. Fuzzy theorists argue that a sting of low membership grades

should not produce a high membership grade instead, the limit of the resulting membership

grade should be the strongest membership value in the collection.

The skeptical observer will note that the assignment of values to linguistic meanings (such as

0.90 to "very") and vice versa, is a most imprecise operation. Fuzzy systems, it should be

noted, lay no claim to establishing a formal procedure for assignments at this level; in fact,

the only argument for a particular assignment is its intuitive strength. What fuzzy logic does

propose is to establish a formal method of operating on these values, once the primitives have

been established.

Hedges :

Another important feature of fuzzy systems is the ability to define "hedges," or modifier of

fuzzy values. These operations are provided in an effort to maintain close ties to natural

language, and to allow for the generation of fuzzy statements through mathematical

calculations. As such, the initial definition of hedges and operations upon them will be quite a

subjective process and may vary from one project to another. Nonetheless, the system

ultimately derived operates with the same formality as classic logic. The simplest example is

in which one transforms the statement "Jane is old" to "Jane is very old." The hedge "very" is

usually defined as follows:

µ"very"A(x) = µA(x)^2

Thus, if mOLD(Jane) = 0.8, then mVERYOLD(Jane) = 0.64.

Other common hedges are "more or less" [typically SQRT(µA(x))], "somewhat," "rather,"

"sort of," and so on. Again, their definition is entirely subjective, but their operation is

consistent: they serve to transform membership/truth values in a systematic manner according

to standard mathematical functions.

Cartesian Product & Co-product:

Let A & B be fuzzy sets in X & Y respectively, then Cartesian product of A & B is a fuzzy
set in the product space XxY with the membership function

Similarly, Cartesian co-product A+B is a fuzzy set

Both Product & Co-product are characterized by 2- dimensional MFs.

LECTURE-5

Fuzzy Extension Principle:

Consider a function y = f (x).

If we known x it is possible to determine y.

Is it possible to extend this mapping when the input, x, is a fuzzy value.

The extension principle developed by Zadeh (1975) and later by Yager (1986) establishes

how to extend the domain of a function on a fuzzy sets.

PRINCIPLE

Suppose that f is a function from X to Y and A is a fuzzy set on X defined as

A = μA(x1)/x1 + μA(x2)/x2 + . . . + μA(xn)/xn.

The extension principle states that the image of fuzzy set A under the mapping f (.) can be

expressed as a fuzzy set B defined as

B = f (A) = μA(x1)/y1 + μA(x2)/y2 + . . . + μA(xn)/yn

where yi = f (xi)

If f (.) is a many-to-one mapping, then, for instance, there may exist x1, x2 ∈ X, x1 6= x2,

such that f (x1) = f (x2) = y_, y_ ∈ Y . The membership degree at y = y∗ is the maximum of

the membership degrees at x1 and x2 more generally, we have μB(y_) = maxy=f (xi) μA(x)

A point to point mapping from a set A to B through a function is possible. If it is many to one
for two x in A then the membership function value in set B is calculated for f(x) as max
value of MF.

Fuzzy Relation:

CRISP MAPPINGS:

Fig. Mapping a relation

Consider the Universe X = {−2,−1, 0, 1, 2}

Consider the set A = {0, 1}

Using the Zadeh notation A = { 0/ −2 + 0/−1 + 1/ 0 + 1/ 1 + 0/ 2}

Consider the mapping y = |4x| + 2

What is the resulting set B on the Universe Y = {2, 6, 10}

It is possible to achieve the results using a relation that express the

mapping y = |4x| + 2.

Lets X = {−2,−1, 0, 1, 2}.

Lets Y = {0, 1, 2, . . . , 9, 10}

The relation

B = A ◦ R

2011 13 / 62

Applying the Relation

Fuzzy Mappings:

Fig. Fuzzy arguments mapping

Consider two universes of discourse X and Y and a function y = f (x).

Suppose that elements in universe X form a fuzzy set A.

What is the image (defined as B) of A on Y under the mapping f ?

Similarly to the crisp definition, B is obtained as

@nce.ufrj.br (PPGI-UFRJ) Extension Principle September

2011 17 / 62

Fuzzy vector is a convenient shorthand for calculations that use matrix relations.

Fuzzy vector is a vector containing only the fuzzy membership values.

Consider the fuzzy set:

The fuzzy set B may be represented by the fuzzy vector b:

EXTENSI

Now, we will be talking about fuzzy relation. If x and y are two universal sets, the fuzzy sets,

the fuzzy relation R x y is given. As this is all ordered pair, µR x y up on x y for all x y,

belonging to the Cartesian space x, you associate µ R x y with each ordered pair.

What is the difference between fuzzy and crisp relation? In fuzzy this is missing, where µ R x

y is a number in 0 and 1. µR x y is a number between 0 and 1. This is the difference between

crisp relation and fuzzy relation. In crisp relation, it was either 0 or 1. It is either completely

connected or not connected, but in case of fuzzy, connection is a degree; that is, it is from 0 to

1.

The example is, let x equal to 1 2 3. Then x has three members, y has two members 1 and 2.

If the membership function associated with each ordered pair is given by this e to the power

minus x minus y whole squared. I is seen that this is the kind of membership function that is

used to know, how close is the members of y are from members of x. Because, if I relate from

1 to 1 using this, then you can see 1 minus 1 is 0 that is 1 and 1 very close to each other;

whereas, 2 and 1 is little far and 3 1 one is further far. This is a kind of relationship we are

looking between these two sets.

Let us derive fuzzy relation. If this is the membership function, fuzzy relation is of course all

the ordered pairs. We have to find out 111 2 2 1 2 2 3 1 and 3 2. These are all the sets of

ordered pairs and associated membership functions. You just compute e to the power minus x

minus y whole square. Here, 1 1 1 minus 1 whole square, 1 2 1 minus 2 whole square, 2 1 2

minus 1 whole square, 2 two 2 minus 2 whole square, 3 1 3 minus 1 whole square, 3 2 3

minus 2 whole square and if you compute them, you find 1 0.4 3 0.4 3 1 0.1 6 0.4 3. This is

your membership function. This is one way to find relation.

Normally, I know, it is easier to express the relation in terms of a matrix instead of this

continuum fashion, where each ordered pair is associated with membership function. It is

easier to appreciate the relation by simply representing them in terms of matrix. How do we

do that? This is my x 1 2 3 y is 1 21 the membership function associated was 1 1 2

membership is 0.4 3 2 1 0.4 3 2 2 1 3 1 0.1 6 and 3 2 is 0.4 3 that you can easily verify here 1

3 0.4 3 0.1 6 and 1.

The membership function describes the closeness between set x and y. It is obvious that

higher value implies stronger relations. What is the stronger relation? It is between 1 and 1,

and they are very close to each other, and 2 and 2; they are very close to each other.

Closeness between 2 and

2, between 1 and 1 is actually 1 and 1. They are very close to each other; similarly, 2 and 2. If

I simply say numerical closeness, then 2 and 2 are the closest, and 1 and 1 are the closest.

That is how these are the closest. Higher value implies stronger relations.

This is a formal definition of fuzzy relation; it is a fuzzy set defined in the Cartesian product

of crisp sets; crisp sets x1 x2 until xn. A fuzzy relation R is defined as µR upon x1 to xn,

where x1 to xn belongs to the Cartesian product space of x1 until xn; whereas, this µR the

fuzzy membership associated is a number between 0 and 1.

LECTURE-6

Fig. Inferring Fuzzy relation

Max-min composition or Max-min product:

It is a sort of matrix multiplication but memberships are not multiplied.

We will now explain, max min composition operation using an example that makes things

much more clear. This is my matrix, relational matrix R1 relating x and y and R2 relating y

and z. I have to find out the relational matrix from x to z using fuzzy rule of composition. We

normally write R3 is R1 composition R2. Using max min composition, how do we compute

R3?

Fig. Example Max-min composition or Max-min product

I want to now build a relationship between R1 & R2. Membership associated with x1 is 0.1

and z1 is 0.9. Let me put it very precise, x1 x2 x3 z1 and z2; if you look at what we will be

doing here, This is my x1 row and this is my z1 column. What I do, x1 row and z1 column; I

put them parallel and find out what is minimum. Here, minimum is 0.1 and here minimum is

0.2. After that, I find out what is the maximum, which is 0.2. This is what maximum of

minimum 0.1. 0.9 is minimum 0.2. 0.7 is 0.2. This is how we found out. The easiest way if I

want to find out is this one; this x1 x2 and z1. x2 means this row which is 0.4 and 0.5 and x2

and z1. z1 is again 0.9 and 0.7. I will find out. Minimum here is 0.4, minimum here is 0.5 and

maximum here is 0.5. You get this 0.5.Similarly, we can compute all the elements in R3

using a max min composition operation. As usual, any max min composition can follow

certain properties, associative and distributive over union. That is P fuzzy composition Q

union R is P composition Q union P composition R.

Fig. Properties of max-min composition

Similarly, weekly distributed over union is P composition, Q intersection, R is a subset of P

composition. Q union P composition R monotonic Q is a subset of R implies that, P

composition Q is a subset of P composition R.

Max-product composition:

Now, again, the same example we have taken R

1, R2 and R3. Now, I want to find out from R1 and R2, what R3 using max product

composition is.

Fig. Example Max-product composition

Let us say, this is x1 x2 x3 z1 z2 z1 z2 and this is x1 x2 x3 for x1. I take this row which is 0.1

0.2 and finding the relation the fuzzy membership associate x1 and z1. I take the column

from z1 which is 0.9 0.7 and I multiply them here 0.1 0.9 is point 0 9 0.2 0.7 is 0.1 4 and find

out what is the maximum. This is the maximum 0.1 4.

I take another example. Let us find out the relationship between x2 and z2; for x2 the row is

0.4 0.5 and z2 the column is 0.8 0.6. Corresponding to this, if I multiply I get 0.4 0.8 is 0.3 2

0.5 0.6 is 0.3. Maximum is 0.3 2. This is 0.4 3 0.3 2. This is where it is 0.1. The answer is

here, the R3 and if I go back, if I look, R3 here is different.

Fig. Projection of fuzzy relation

Projection of fuzzy relation:
A fuzzy relation R is usually defined in the Cartesian space x and x and y. Often a projection

of this relation on any of the sets x or y, may become useful for further information

processing.

The projection of R x y on x denoted by R 1 is given by µ R 1 x is maximum. So, y belongs

to y µR x y. The meaning is that if I have R, this is x1 and x2 and this is y1 and y2, and this is

0.1 0.4 and this is 0.5 0.6. If these are the membership functions associated with x1 y1 x2 y2

is 0.4 x2 y1 is 0.5 x2 y2 is 0.6.projection, which means for x projection, I find out what the

maximum is. Overall, y in this case maximum is 0.4 and for x2 the max maximum projection

is if I took it here, 0.6. Similarly, if I make projection of R, x, y over x, what is the

maximum? This is 0.5 and this is 0.6. This is called x projection and y projection of a relation

matrix R.

Fig. Example of projection

We repeat another example. We have x as 3 components 1 2 3, y has 2 components 1 and 2.

This is the previous example that we had 1 0.4 3 0.4 3 1 0.1 6 0.4 3. x projection would be 1

0.4 3 maximum 1 0.4 3 1 maximum 1 0.1 6 0.4 3 maximum 0.4 3. Above figure illustrates x

and y projection of fuzzy relation. For x projection, the maximum value in each row is

retained. What is the maximum value in each row? Here, x projection maximum value in

each row is retained, while the maximum value in each column is retained for y projection.

Fig. Definition of projection

This is our formal definition of a fuzzy relation, projection of a fuzzy relation R on to any of

its set in the Cartesian product space; that is in the Cartesian product space. This is our

Cartesian product space and for that, we can map this one to any of these i or j or k; whatever

it is, for any value, then is defined as a fuzzy relation Rp, where Rp is defined as maximum

over Xi until Xk, where this is our Xi Xj Xk and this is µRp.

First, we talked about fuzzy relation projection of fuzzy relation. Once we have projection of

fuzzy relation, we can extend the projection to again infer what should be the relation. This

kind of technique may be useful in coding the information, where we have a huge number of

information and we want to transfer such a kind of projection and from projection to

extension would be beneficial for coding operation.

The crisp relation and fuzzy relation:

 the difference is that in crisp relation; the index is either 0 or 1 that is, either complete

relation or no relation. But in fuzzy the membership grade is either 0 or 1; Whereas, in fuzzy

the relation has a grade from 0 to 1. Fuzzy composition rule; max min composition max

product composition unlike in crisp relation, where both max min and max product gives you

the same answer; whereas in fuzzy composition, max min and max product will give two

different answers .

LECTURE-7

Fuzzy If-then rules:

If x is A then y is B

“x is A” is antecedent or premise which tells the fact

“y is B” is consequence or conclusion

The whole statement is the rule.

Eg. If tomato is red then it is ripe.

These if then rules are the base of fuzzy reasoning.

If then rules are of different types:

1. Single rule with single antecedent

2. Single rule with multiple antecedent

3. Multiple with multiple antecedent

Steps of Fuzzy reasoning:

Shown in fig. For 2 rules what will be the consequent MF after aggregation

1. Degree of compatibility

2. Firing strength

3. Qualified consequent MF

4. Aggregate all qualified consequent MFs to obtain an overall MF

Fig. Fuzzy reasoning, deriving output

FUZZY MODELLING:

Fuzzy Inferencing

The process of fuzzy reasoning is incorporated into what is called a Fuzzy Inferencing

System. It is comprised of three steps that process the system inputs to the appropriate system

outputs. These steps are 1) Fuzzification, 2) Rule Evaluation, and 3) Defuzzification. The

system is illustrated in the following figure.

Each step of fuzzy inferencing is described in the following sections.

Fuzzification

Fuzzification is the first step in the fuzzy inferencing process. This involves a domain

transformation where crisp inputs are transformed into fuzzy inputs. Crisp inputs are exact

inputs measured by sensors and passed into the control system for processing, such as

temperature, pressure, rpm's, etc.. Each crisp input that is to be processed by the FIU has its

own group of membership functions or sets to which they are transformed. This group of

membership functions exists within a universe of discourse that holds all relevant values that

the crisp input can possess. The following shows the structure of membership functions

within a universe of discourse for a crisp input.

where:

degree of membership: degree to which a crisp value is compatible to a membership

function, value from 0 to 1, also known as truth value or fuzzy input.

membership function, MF: defines a fuzzy set by mapping crisp values from its domain to

the sets associated degree of membership.

Fig. Fuzzy inferencing system

crisp inputs: distinct or exact inputs to a certain system variable, usually measured

parameters external from the control system, e.g. 6 Volts.

label: descriptive name used to identify a membership function.

scope: or domain, the width of the membership function, the range of concepts, usually

numbers, over which a membership function is mapped.

universe of discourse: range of all possible values, or concepts, applicable to a system

variable.

When designing the number of membership functions for an input variable, labels must

initially be determined for the membership functions. The number of labels correspond to the

number of regions that the universe should be divided, such that each label describes a region

of behavior. A scope must be assigned to each membership function that numerically

identifies the range of input values that correspond to a label.

The shape of the membership function should be representative of the variable. However this

shape is also restricted by the computing resources available. Complicated shapes require

more complex descriptive equations or large lookup tables. The next figure shows examples

of possible shapes for membership functions.

When considering the number of membership functions to exist within the universe of

discourse, one must consider that:

i) too few membership functions for a given application will cause the response of the system

to be too slow and fail to provide sufficient output control in time to recover from a small

input change. This may also cause oscillation in the system.

ii) too many membership functions may cause rapid firing of different rule consequents for

small changes in input, resulting in large output changes, which may cause instability in the

system.

These membership functions should also be overlapped. No overlap reduces a system based

on Boolean logic. Every input point on the universe of discourse should belong to the scope

of at least one but no more than two membership functions. No two membership functions

should have the same point of maximum truth, (1). When two membership functions overlap,

the sum of truths or grades for any point within the overlap should be less than or equal to 1.

Overlap should not cross the point of maximal truth of either membership function.

The fuzzification process maps each crisp input on the universe of discourse, and its

intersection with each membership function is transposed onto the μ axis as illustrated in the

previous figure. These μ values are the degrees of truth for each crisp input and are associated

with each label as fuzzy inputs. These fuzzy inputs are then passed on to the next step, Rule

Evaluation.

Fuzzy If then Rules :

We briefly comment on so-called fuzzy IF-THEN rules introduced by Zadeh. They may be

understood as partial imprecise knowledge on some crisp function and have (in the simplest

case) the form IF x is A
i

THEN y is B
i
. They should not be immediately understood as

implications; think of a table relating values of a (dependent) variable y to values of an

(independent variable) x:

A

i
, B

i
may be crisp (concrete numbers) or fuzzy (small, medium, …) It may be understood in

two, in general non-equivalent ways: (1) as a listing of n possibilities, called Mamdani's

formula:

(where x is A

1
and y is B

1
or x is A

2
and y is B

2
or …). (2) as a conjunction of implications:

Rule Evaluation

Rule evaluation consists of a series of IF-Zadeh Operator-THEN rules. A decision structure

to determine the rules require familiarity with the system and its desired operation. This

knowledge often requires the assistance of interviewing operators and experts. For this thesis

this involved getting information on tremor from medical practitioners in the field of

rehabilitation medicine.

There is a strict syntax to these rules. This syntax is structured as:

IF antecedent 1 ZADEH OPERATOR antecedent 2 THEN consequent 1 ZADEH

OPERATOR consequent 2..............

The antecedent consists of: input variable IS label, and is equal to its associated fuzzy input

or truth value μ(x).

The consequent consists of: output variable IS label, its value depends on the Zadeh Operator

which determines the type of inferencing used. There are three Zadeh Operators, AND, OR,

and NOT. The label of the consequent is associated with its output membership function. The

Zadeh Operator is limited to operating on two membership functions, as discussed in the

fuzzification process. Zadeh Operators are similar to Boolean Operators such that:
AND represents the intersection or minimum between the two sets, expressed as:

OR represents the union or maximum between the two sets, expressed as:

NOT represents the opposite of the set, expressed as:

The process for determining the result or rule strength of the rule may be done by taking the
minimum fuzzy input of antecedent 1 AND antecedent 2, min. inferencing. This minimum
result is equal to the consequent rule strength. If there are any consequents that are the same
then the maximum rule strength between similar consequents is taken, referred to as
maximum or max. inferencing, hence min./max. inferencing. This infers that the rule that is
most true is taken. These rule strength values are referred to as fuzzy outputs.

Defuzzification

Defuzzification involves the process of transposing the fuzzy outputs to crisp outputs. There

are a variety of methods to achieve this, however this discussion is limited to the process used

in this thesis design.

A method of averaging is utilized here, and is known as the Center of Gravity method or

COG, it is a method of calculating centroids of sets. The output membership functions to

which the fuzzy outputs are transposed are restricted to being singletons. This is so to limit

the degree of calculation intensity in the microcontroller. The fuzzy outputs are transposed to

their membership functions similarly as in fuzzification. With COG the singleton values of

outputs are calculated using a weighted average, illustrated in the next figure. The crisp

output is the result and is passed out of the fuzzy inferencing system for processing

elsewhere.

 Fuzzy Rule base and Approximate Reasoning an example:

What is fuzzy linguistic variable? Algebraic variables take numbers as values, while
linguistic variables take words or sentences as values.

For example, let x be a linguistic variable with a label „temperature‟. The universe of
discourse is temperature. In that universe, I am looking at a fuzzy variable x when I describe
the temperature. The fuzzy set temperature denoted as T can be written as T = very cold,
cold, normal, hot or very hot.

For each linguistic value, we get a specific membership function.

These are necessary because in the traditional sense, when we express worldly knowledge,
we express them in natural language. So here it is. From computational perspective, such
worldly knowledge can be expressed in terms of rule base systems.

Rule based systems:

Fig. Basics of rule based system

The above form is commonly referred to as the IF-THEN rule-based form. It typically
expresses an inference such that if we know a fact, we can infer or derive another fact. Given
a rule, I can derive another rule or given a rule, if I know a rule and the associated relation,
then given another rule, I can predict what should be the consequence.

Fig.Fuzzy rules

This is a fuzzy rule base. Any worldly knowledge can be expressed in form in the form of a
rule base. Now, when I talk about fuzzy rule base, fuzzy information can be represented in
the form of a rule base, which consists of a set of rules in conventional antecedent and
consequent form such as if x is A, then y is B, where A and B represent fuzzy propositions
(sets). Suppose we introduce a new antecedent say A dash and we consider the following rule
if x is A dash, then y is B dash, from the information derived from rule 1, is it possible to
derive the consequent in rule 2, which is B dash?

The consequent B dash in rule 2 can be found from composition operation B dash equal to A
dash. This is called the compositional rule of inference, the compositional operator with R.

Fuzzy implication Relation:

A fuzzy implication relation is another category, which will call Zadeh implication. This is if

p implies q may imply either p and q are true or p is false. What we are saying is that just like

a local Mamdani rule, we say p and q are true imply either p and q are true or p is false. Thus,

p implies q means…. p and q are simultaneously true, which is Mamdani local rule or if p is

false, then p implies q has no meaning or p is false. This has taken an extra logic that is p and

q or not p.

Thus, the relational matrix can be computed as follows. If I look at this, what is p and q? p
and q means minimum of mu

A
x and mu

B
y. What is not p? 1 minus µ

A
x. This entire thing

has to be maximum of minimum of these and this, which is this statement.µ, the relational
matrix elements are computed using this particular expression. Given a set of rules, we just
learnt various schemes by which we can construct a relational matrix between the antecedent
and the consequent. The next step would be to utilize this relational matrix for inference. This
method is commonly known as compositional rule of inference, that is, associated with each
rule we have a relational matrix. So, given a rule means given a relational matrix and given
another antecedent, we compute a consequent.

Fig. Compositional rules

This is derived using fuzzy compositional rules. The following are the different rules for
fuzzy composition operation, that is, B equal to A composition R. R is the relational matrix
associated with a specific rule, A is a new antecedent that is known, R is known, B is the new
consequent for the new antecedent A. I have to find out what is B for this new A, given R.
That is computed by A composition R and we have already discussed in the relation class that
there are various methods and max-min is very popular.

First, we compute min and then max. Similarly, max-product: instead of min, we take the
product and compute what is the maximum value. Similarly, min-max: instead of max-min, it
is min-max. First, max and then min. Next, max-max and min-min. One can employ these
looking at the behavior of a specific data.

Fig. Example of Compositional rules

Now, we will take an example.

We are given a rule if x is A, then y is B, where A is this fuzzy set: 0.2 for 1, 0.5 for 2, and

0.7 for 3. This is a discrete fuzzy set. B is another fuzzy set that defines fuzzy membership

0.6 for 5, 0.8 for 7, and 0.4 for 9. The question is infer B dash for another rule if x is A dash,

then y is B dash, where A dash is known. A is known, B is known, and A dash is known.

What we have to find out is what B dash is. Infer B dash is the question that is being asked

Using Mamdani implication relation, first we will find out between A… the first rule, that is,

if x = A, then y is B. The relational matrix associated with this rule is…. For R, how do we

compute? A elements are 1, 2, and 3 and B elements are 5, 7, and 9. We have to find out now

for 0.2. Here, we compare with all the elements in point B and with each element, we found

what the minimum is. The minimum is always 0.2. Hence, the maximum of that is always

0.2. I have to find out the relational matrix between A and B.

The Mamdani principle means minimum, so between 1 and 5, 1 is associated with 0.2, and 5

is associated with 0.6, so the minimum is 0.2. Similarly, 1 is associated with 0.2, 7 is

associated with 0.8, so for 1 and 7, the minimum is 0.2. Similarly, 1 is associated with 0.2, 9

is associated with 0.4, so from 1 to 9, the minimum membership is 0.2. Similarly, you can see

that from 2 to all the elements 5, 7, 9, the minimum are 0.5, 0.5, and 0.4. Similarly, from 3 to

5, 7, and 9, we have 0.6, 0.7, and 0.4. These are the minimum fuzzy memberships between an

element in A to element in B. That is how we compute the relational matrix.

Once we compute the relational matrix, then we use max-min composition relation to find out

what is B dash, which is A dash (which is 0.5, 0.9, and 0.3) composition R and you can

compute. This is my R. I have to find out my matrix. This is 0.5, 0.9, and 0.3. So this

composition R is… you can easily see I take this row vector, put along the column matrix

and I see what is the minimum for each case. You can easily see 0.2 will be minimum here,

0.5 will be minimum here, 0.3 and maximum is 0.5.

The first element is 0.5. Again, I take this place in parallel with this column and then, I find

first minimum here is 0.2, here 0.5, here 0.3 and then maximum is again 0.5. Again, I take the

same row vector, put along this column vector and then, I find here the minimum is 0.2, here

minimum is 0.4, here minimum is 0.3 and the maximum is 0.4. This is the relation, this is the

answer. This is our B dash. Given A, this is my B dash using fuzzy compositional principle or

relation.

Fig. Comparison of compositional rules

There are other mechanisms also that we discussed. For the same example, if you use max-

min, you get B dash; for max-product, you get another B dash; for min-max, you get another.

Min-max and max are same for this example. Then, for max-max, you see that all the fuzzy

membership are the maximum values and for min-min, they are the minimum values here.

Approximate reasoning:

 means given any logical system, we do not have, it is very difficult to make an exact result.

That is why from engineering perspective, we are more liberal. We do not want to be so

precise. As long as our system works, we are happy; if our control system works, we are

happy.

Fig. Approximate reasoning

Approximate reasoning. We have set up rules so we use a specific compositional rule of

inference and then we infer the knowledge or the consequence. Given a rule R (R is the

relational matrix associated with a specific rule) and given a condition A, the inferencing B is

done using compositional rule of inference B equal to A composition R. The fuzzy sets

associated with each rule base may be discrete or continuous, that is, A may be discrete or A

and B may be discrete or continuous.

A rule base may contain a single rule or multiple rules. If it is continuous, I cannot define

what the R relational matrix is. It is very difficult because it will have infinite values. R is not

defined. That is why for continuous, we apply compositional rule of inference but the method

to compute is different. A rule base may contain single rule or multiple rules. Various

inference mechanisms for a single rule are enumerated. Various mechanism means we talked

about min-max, max-min, max-max, min-min and so on. The inference mechanism for

multiple rules.

Single rule:

Now, we will take the examples one by one. Single rule with discrete fuzzy set. We talked

about a fuzzy set that may consist of a single rule or multiple rules. It can be discrete fuzzy

set or a continuous fuzzy set. We will try to understand how to make approximate reasoning

for such a rule base using the methods that we just enumerated. For each rule, we compute

what is the relational matrix if it is discrete fuzzy set and then we use compositional rule of

inference to compute the consequence given an antecedent. That is for discrete fuzzy set. We

have already talked about this but again, for your understanding, I am presenting another

example for single rule with discrete fuzzy set.

Fig. Single rule

Rule 1: If temperature is hot, then the fan should run fast. If temperature is moderately hot,

then the fan should run moderately fast. In this example, we are given the temperature is in

degree Fahrenheit and the speed is expressed as 1000 rpm. The fuzzy set for hot H is for 70

degree Fahrenheit, 80 degree Fahrenheit, 90 degree Fahrenheit, and 100 degree Fahrenheit,

the membership values are 0.4, 0.6, 0.8, and 0.9. Similarly, for the fuzzy set F, for which the

fan should run fast, the fuzzy set is for 1000 rpm, the membership is 0.3, for 2000 rpm, the

membership is 0.5, for 3000 rpm, the membership 0.7, and for 4000 rpm, the membership is

0.9.

Given H dash, which is moderately hot, to be for 70… moderately hot means it is a little

more hot. So, same temperature obviously and their corresponding membership values will

reduce, because if I am describing moderately hot, they will have the same temperature but

the membership values will be less. You can easily see here that for 70, instead of 0.4, now it

is 0.2; for 80, instead of 0.6, it is 0.4; for 90, instead of 0.8, it is 0.6; for 100, instead of 0.9, it

is 0.8. This is moderately hot. Now, the question is find F dash.

I hope you are clear with this question. The question is very simple. We are given rule 1, we

have defined what is the fuzzy set hot and fuzzy set fast by these two statements and in the

second rule for moderately hot, we know the fuzzy set. We do not know what the fuzzy set is

corresponding to moderately hot, that is, moderately fast. We do not know moderately fast.

Find out F dash. If H, then F. If H dash, then F dash. Find out F dash. First, what do we do?

Corresponding to rule 1, we found out what is R. This is for rule 1. We knew that the

membership functions for H were 0.4, 0.6, 0.8, and 0.9, and for fast, the membership

functions where 0.3, 0.5, 0.7, and 0.9. If you look at this, these are my H values, the crisp

values: 70 degree Fahrenheit, 80 degree Fahrenheit, 90 degree Fahrenheit, and 100 degree

Fahrenheit. This is my speed: 1000 rpm, 2000 rpm, 3000 rpm, and 4000 rpm.

Between 70 and 1000 rpm, the entry would be minimum of these two (Refer Slide Time:

41:57), which is 0.3. Similarly, between 0.4 and 0.5, the minimum would be again 0.4 and

then between 0.4 and 0.7, it will be 0.4, and for 0.4 and 0.9, it is 0.4.

Similarly, we go to the next one, which is 0.6. For 0.6, 0.3 minimum 0.3, for 0.6 and 0.5, the

minimum is 0.5, for 0.6 and 0.7, minimum is 0.6, for 0.6 and 0.9, it is 0.6. Similarly, you can

fill all other cells here with their values: 0.3, 0.5, 0.7, 0.8, 0.3, 0.5, 0.7, and 0.9. This is my

relation matrix associated with rule 1: if H, then F. Now, what I have to do is I have to find

out F dash given H dash, using the fuzzy compositional rule of inference, which is

represented like this.

Fig. Relational matrix

F dash is H dash compositional rule of inference with R. This is max-min composition

operation. First, we take the min and then compute. H dash is given as 0.2, 0.4, 0.6, and 0.8.

Fig. Multiple rules

This is my H dash (moderately hot) and I have to do compositional inference between H dash

and R. Again, I am repeating so that you understand how to compute it. You put this row

vector along this column vector first . For each element, you find out what is the minimum.

You see that here it is 0.2, 0.3, 0.3, and 0.3 and the maximum of that is 0.3.

Similarly, you take again these values and put them here vertically. Here, the minimum is 0.2,

here 0.4, here 0.5, here 0.5, and maximum is 0.5. I am sure you will see here it is 0.7, but in

this case, you find that if you take this here, it is 0.2, here 0.4, here 0.6, here 0.8, and

maximum is 0.8. F dash is 0.3, 0.5, 0.7, and 0.8. That is how we infer or we do approximate

reasoning for a rule base. This is a very simple case.

Multiple rule:
There are two rules now. Rule 1 is if height is tall, then speed is high. Rule 2: if height is

medium, then speed is moderate. This is describing a rule for a person as to how fast he can

walk. Normally, those who are tall can walk very fast and those who are short, naturally their

speed will be less. This is one fuzzy rule that expresses the speed of a person while walking.

If height is tall, then speed is high and if height is medium, then speed is moderate. For this,

the fuzzy memberships are defined as tall, high, medium, and moderate.

Tall is 0.5, 0.8, and 1 for various feet like 5, 6, and 7. For speed is high, for 5 meter per

second, 7 meter per second, and 9 meter per second, the corresponding membership values

are 0.4, 0.7, and 0.9. For H2, which is medium height, the corresponding fuzzy

membership… you can easily see that when I say medium in this fuzzy set, 5 has 0.6, 6 has

0.7, and 7 has 0.6. The moderate speed is 0.6 for 5 meter per second, 0.8 for 7 meter per

second, and 0.7 for 9 meter per second. If this is the fuzzy set given, now the question is

given H dash, which is above average, and the corresponding fuzzy set is 0.5, 0.9, 0.8 for

three different heights, find S dash, the speed above normal. I hope the question is very clear

to you.

Fig. Relational matrix for 2 rules

We have two rules. If height is tall, then speed is high; tall is defined and high is defined. If

height is medium, then speed is moderate. I have already defined the fuzzy sets for both

medium as well as moderate. They are all discrete fuzzy sets. Now, you are presented with

new data and what is that new data? You are presented with a data called above average,

which is 0.5, 0.9, and 0.8 for three different heights for 5, 6, and 7. Then, find S dash equal to

above normal, that is, if height is above average, then the speed should be above normal.

This is the solution of this example. We have two rules. Naturally, we will have two

relational matrices: R1 for rule 1 and R2 for rule 2. I will not go in detail of how we compute.

You simply you go the antecedent and consequent, look at the membership function, find the

minimum for each entry. Here, these are the heights and these are the speeds; 5, 6, 7 feet is

the height and 5, 7, and 9 meter per second are the speeds of the individuals.

Now, you check the fuzzy sets and corresponding to each fuzzy set, find out what is the

minimum membership function. For 5, 5, you will find the membership function is 0.4,

minimum 0.5, 0.5, 0.4, 0.8, 0.8, 0.4, 0.8, 0.9. You can verify this. Similarly, R2 can be found

out. Taking the minimum membership entry between these two fuzzy sets, that is,

if I say this is H1 and S1 and this is H2 and S2. Look at these two fuzzy sets, find out what

the minimum entries are for each relation and then, how do we compute S dash above

normal? We have now two relational matrices. It is very simple. We do two composition

operations: H dash composition with R1 (this one) and again, H dash composition R2 and

then, we take the maximum of that, maximum of these two.

Fig. Multiple rule with continuous fuzzy sets

You can easily see that the maximum of H dash composition R1, H dash composition R2.

You can easily see that because H dash is common, this particular expression is the same as

H dash composition max of R1 and R2. This is R1 and R2. We look at all those entries

wherever it is the maximum: for 0.4 and 0.6, the maximum is 0.6; for 0.5 and 0.6, the

maximum is 0.6; for 0.5 and 0.6, the maximum is 0.6. You see the last element here 0.9 here

and 0.6, so this is 0.9. Like that, for all entries of R1 and R2, whatever the maximum values,

you put these values here (that is called maximum R1 and R2) and take a composition with H

dash. So H dash composition max of R1 and R2. H dash is already given as 0.5, 0.9, and 0.8.

If you do this composition, you get 0.6, 0.8, and 0.8. I hope this clears your concept of how

we compute or we do approximate reasoning in a rule base. Similarly, if there are multiple

rules, we have no problem and we can go ahead with the same principle.

The last section is the multiple rules with continuous fuzzy sets. We talked about discrete

fuzzy set, but if it is continuous fuzzy sets, how do we deal with that? Normally, a continuous

fuzzy system with two non-interactive inputs x1 and x2, which are antecedents, and a single

output y, the consequent, is described by a collection of r linguistic IF-THEN rules Where the

rule looks like this: If x1 is A1 k and x2 is A2 k, then y k is B k, where k is 1, 2 up to r. This

is the k th rule. Similarly, we can have rule 1, rule 2, rule 3, up to rule r. In this particular

rule, A1 k and A2 k are the fuzzy sets representing the k th antecedent pairs and B k are the

fuzzy sets representing the k th consequent. In the following presentation, what we will do

now is we will take a two-input system and two-rule system just to illustrate how we infer

from a rule base where the fuzzy sets are continuous. The inputs to the system are crisp

values and we use a max-min inference method.

Fig. Viewing multiple rules

We have two rules here represented graphically. You can see there are two variables x1 and

x2. There are two fuzzy variables and for each rule, we have a consequent y. The first rule

says that if x1 is A1 1 and x2 is A2 1, then y is B1.

Similarly, if x1 is A1 2, x2 is A2 2, then y is B2. Now, how do we infer? Given a crisp input,

a new input is given, crisp input in the domain of x1 and another crisp input in the domain of

x2. There can be a system whose two variables can be temperature as well as pressure. You

can easily think x1 to be the temperature and x2 to be the pressure. For example, for a

particular given system, you found out the temperature to be 50 degrees centigrade and

pressure to be some value. Given these two quantities, crisp quantities, how do we infer what

should be y?

The crisp input is given – temperature. Now, you find out corresponding membership values

here. Corresponding to this crisp input, we get the membership value in rule 1 as µA1 1 and

for the same crisp input, this rule 2 will provide you muA1 2. Now, in the second fuzzy

variable, given crisp input, rule 1 will compute µA2 1 and for the second one, the second

rule, the same crisp input would give this one, which is muA2 2. Once we find out these

membership values, what do we do? We graphically see which is minimum between µA1 1

and µA2 1. The minimum is µA2 1. We take that and we shade these areas in consequence.

Now, we take the second rule. We find between µA1 2 and µA2 2, the minimum is µA1 2.

We take that minimum and shade the area and consequent part of this rule 2. Now

graphically, we add these two taking the maximum. First, min and then max. You can easily

see that when I overlap this figure over this figure, I get this particular figure. You overlap

this second figure on the first figure or first figure on the second figure and take the resultant

shaded area. After taking this resultant shaded area…. Once you find this shaded area, the

next part is to see what is y given a crisp value. There are many methods, but we will focus in

this class or in this course on only one method, that is, center of gravity method(COG).

Obviously, if I take this figure and find out what is the center of gravity, it is this value y star.

The crisp output can be obtained using various methods. One of the most common method is

the center of gravity method. The resulting crisp output is denoted as y star in the figure. This

is y star. What we learnt in this is given a crisp input 1 and crisp input 2 and given two fuzzy

rules, how do we infer correspondingly a crisp output? Our data is crisp, but we are doing

fuzzy computation. Hence, rules are fuzzy. We take this data to the fuzzy rule base and then

fuzzify them through fuzzification process. Graphically, we find what is the net shaded area

using the max principle. We found out the shaded area for each rule in consequent taking the

min principle. Taking the max principle, we found out the resultant area and then, y star is the

center of gravity of these areas.

LECTURE-8

Fuzzy Control system or Fuzzy Inference System:

Categories:

1. Mamdani type and

2. Takagi–Sugeno type (T-S or TSK for short form T. Takagi, M. Sugeno, and K. T.

Kang).

Mamdani type fuzzy systems:

These employ fuzzy sets in the consequent part of the rules. This is a Mamdani type fuzzy

logic controller. What they do is that the consequent part itself takes the control action; the

incremental control action is described in the consequent part of each rule.

Fig. Architecture of FLC

The actual data that the controller is receiving is crisp data or classical data that has a definite
value. That crisp data goes to the fuzzy logic controller and it has these four components that
you can see: fuzzifier, rule base, inference engine and defuzzifier.

Fuzzifier. In a fuzzy logic controller, the computation is through linguistic values, not

through exact computation. Naturally, the fuzzifier would fuzzify the crisp data. In case of

temperature, I can say it is hot, medium-hot, cold, medium-cold, very hot and normal. These

are the fuzzifier. That means given a crisp data or the value of temperature say 40 degrees,

then I have to now convert to various linguistic values and each linguistic value will be

associated with a specific membership function. That is fuzzifier.

Once the data has been fuzzified, then it goes to the rule base and using an inference
mechanism…. The inference is taking place in fuzzy term, not in classical term and after a
fuzzy inference takes place about the decision or about the control action, we place a
defuzzifier. What this defuzzifier does is it converts the fuzzy control action to a crisp control
action.

In general, what we can say is the principal design parameters of a fuzzy logic controller are

the following: fuzzification strategies and interpretation of a fuzzification operator. How do

we fuzzify a crisp data? In the database, the discretization or normalization of universe of

discourse is done, because we must know the range of data one will encounter in an actual

plant. Accordingly, the normalization must be done so that we are taking into account all

possible values of data that one may encounter in a physical plant.

Fuzzy partition of the input and output spaces:

 If I know the dynamic range of an input to the controller and the input to the plant (input to

Fig. Parameters to be designed in FLC

the plant is actually output to the controller)… if I know the dynamic range, then in that

dynamic range, I must learn how to do fuzzy partition of the input and output space and this

fuzzification suits such the process should be complete in the sense.… You see that I am

drawing a universe of discourse here. This is the real value for a specific variable x
1
. If I have

defined a fuzzy set like this and like this, you can easily see that this part of the data is not

associated with any fuzzy membership. This is µ and this is x
1

and unfortunately, this part is

not associated with any membership.

This fuzzification process is not complete. That means the entire universe of discourse in a

specific domain, wherever there are control systems…. There are various kinds of control

systems: process control, robot control, and aircraft control. Every control system is

associated with some input data and some output data. All possible input data and all possible

output data should be associated with a specific linguistic value as well as a membership

function.

Rule base:

Once fuzzification is done, how do we create a rule base? As I said, typically, in the rule

base, the two variables that are most important are error and change in error and we also

showed why it is so. Rule base. Choice of process state input variables and control variables.

You know that if I am implementing a fuzzy state feedback controller, then, a fuzzy state

feedback controller u would be minus K x. So, x is the states of the system, whereas if I am

implementing a fuzzy PID controller, then it will be u old plus K delta u k. Here, this delta u

k is a function of error and change in

error, whereas, in a state feedback controller, this is a common signal r and so, the control

action is dependent on state x1, x2, and xn.

Source and derivation of fuzzy control rules.

 How do I derive these rules? What is the basis? Types of fuzzy control rules. A type of fuzzy

control rule means whether it is a PID controller, fuzzy PID controller or it is a fuzzy state

feedback controller. Similarly, completeness of fuzzy control rules means given any crisp

data in the domain of input space as well as output space, do I have in my rule base a specific

rule associated with this data? If I do not have any rule for this data, then the FLC will fail.

That is meaning of completeness of fuzzy control rules.

Fuzzy inference mechanism:

 We have already talked about what is fuzzy inference mechanism. Given multiple rules, how
do we infer the consequence part? Defuzzification strategies and the interpretation of
fuzzification operator. Once the fuzzy inference is done, from the fuzzy inference, how do I
get a crisp value or a crisp control action? This is called defuzzification.

This is how we fuzzify a crisp data to fuzzy data or we make them fuzzy, that is, the crisp
input for variable x

1
and x

2
…. Actually, this is not x

1
and x

2
but e and delta e are converted to

fuzzy sets using triangular membership functions. It is not always triangular, it can be
anything, but normally in control literature, most of these membership functions are
triangular functions.

Fig. Defuzzification

Defuzzification. Once I know how to do the fuzzification, defuzzification is explained in the

following diagram. You see that among various defuzzification methods, the most popular is

center of gravity method. How do I do it? Crisp input is given at any situation, any k th

sampling instant and the fuzzy logic controller gets the command signal, gets the actual

output of the plant, computes the error, computes the change in error and then, those crisp

values are fed into the fuzzification layer. Then, you have the membership function. You pass

on those fuzzy data to the rule base and then, for a specific rule base… You see that in rule 1,

you see that if you compare the membership µ A
1

1 and µ A
2

1, µ A
2

1 is the minimum and

correspondingly, you shade the zone of action. This is delta u. How much should be the

incremental control action? This is my shaded portion or shaded portion of my control action.

Now I take a second one, second rule and there again, I evaluate the fuzzy membership

function A
1

2 and A
2

2. You see that the membership function in A
1

2 is less. Corresponding

to that, we shade the incremental control action. Now, you see that if I take the maximum of

these two shaded zones, I get this (Refer Slide Time: 38:03), maximum of this. After I get,

this is the fuzzy decision, this is the fuzzy incremental control action, but how do I convert

this fuzzy incremental control action to a crisp action? That is by the center of gravity

method. In the center of gravity method, I integrate µ delta u d delta u upon integration of µ

d delta u. If I integrate this function, I get somewhere here to be the center of gravity. delta µ

star is this value, which is graphically shown here. We discussed about Mamdani type fuzzy

logic controller.

LECTURE-9

Takagi–Sugeno fuzzy systems:

 The number of rules required by the Mamdani model are reduced here. They employ

function of the input fuzzy linguistic variable as the consequent of the rules. What happens

here is

that a fuzzy dynamic model is expressed in the form of local rules. Local rule means if there

are two variables x1 = a and x2 = b, then the plant dynamics can be represented either as a

linear dynamical system or a nonlinear dynamical system, as a known dynamical system.

TSK Fuzzy Rule

• If x is A and y is B then z = f(x,y)

– Where A and B are fuzzy sets in the

antecedent, and

– Z = f(x,y) is a crisp function in the

consequence.

• Usually f(x,y) is a polynomial in the input variables

x and y, but it can be any function describe the

output of the model within the fuzzy region

specified by the antecedence of the rule.

First order TSK Fuzzy Model

• f(x,y) is a first order polynomial

Example: a two-input one-output TSK

IF x is Aj and y is Bk then zi= px+qy+r

The degree the input matches ith rule is typically computed using min

operator: wi = min(µAj(x), µBk(y))

• Each rule has a crisp output

• Overall output is obtained via weighted average (reduce computation time of

defuzzification required in a Mamdani model)

z =i
 wizi/ i

wi

To further reduce computation, weighted sum may be used, I.e.

z = i
 wizi

Example #1: Single-input

• A single-input TSK fuzzy model can be expressed as

– If X is small then Y = 0.1 X +6.4.

– If X is medium then Y = -0.5X +4.

– If X is large then Y = X-2.

Fig. Rules in first order TSK fuzzy model

Example #2 : Two-input

• A two-input TSK fuzzy model with 4 rules can be expressed as

– If X is small and Y is small then Z = -X +Y +1.

– If X is small and Y is large then Z = -Y +3.

– If X is large and Y is small then Z = -X+3.

– If X is large and Y is large then Z = X+Y+2.

Zero-order TSK Fuzzy Model

• When f is constant, we have a zero-order TSK fuzzy model (a special case of the

Mamdani fuzzy inference system which each rule‟s consequent is specified by a fuzzy

singleton or a pre defuzzified consequent)

• Minimum computation time Overall output via either weighted

average or weighted sum is always crisp

• Without the time-consuming defuzzification operation, the TSK (Sugeno) fuzzy model is by

far the most popular candidate for sample data-based fuzzy modeling.

A general Takagi–Sugeno model of N rules for any physical plant, a general T–S model of N

rules is given by Rule
i
. This is the i th rule. If x

1
k is a specific fuzzy set M

1
i and x

2
k is

another specific fuzzy set M
2

i and so on until x
n

k is another fuzzy set M
n

i, then the system

dynamics locally is described as x k plus 1 is A
i
x k plus B

i
u k, where i equal to 1, 2 until N,

because there are N rules.

Advantages over Mamdani model:

1. Less computation

2. Less time consuming

3. Simple

4. Mostly used for sample data based fuzzy modelling

Tsukamoto Fuzzy Models:

• The consequent of each fuzzy if-then rule is represented by a fuzzy set with monotonical

MF

– As a result, the inferred output of each rule is defined as a crisp value induced by the

rules‟ firing strength.

• The overall output is taken as the weighted average of each rule‟s output.

Example: Single-input Tsukamoto fuzzy model

• A single-input Tsukamoto fuzzy model can be expresses as

– If X is small then Y is C1

– If X is medium then Y is C2
– If X is large then Y is C3

Example: Single-input Tsukamoto fuzzy model

Fig. Output of Tsukamoto fuzzy model

Input Space Partitioning:

The antecedent of a fuzzy rule defines a local fuzzy region, while the consequent describes
the behavior with in the region via various constituents. The consequent constituents are
different MF or equation or constant depending on the fuzzy model. But, antecedents of
fuzzy rules can be formed by partitioning the input space.

3 types-

Grid partition: Often chosen method. Applicable to small no. of input variables and MFs i.e.
curse of dimensionality .

Tree partition: Each region is specified uniquely along a corresponding decision tree.
Exponenential increase of no. of rules is reduced. More MFs are needed. Orthogonality
holds roughly. Used in CART algorithm.

Scatter partition:

Portioning is scattered. Orthogonality doesn‟t hold. The portioned regions are non
uniform.No. of rules is reduced, but overall mapping from consequent of each rule out put
is difficult to estimate.

Fig. (a) Grid partition (b) Tree partition (c) Scatter partition

If certain transformation of the input is done, more flexible boundaries and partition will be
obtained.

LECTURE-10

Defuzzification methods in detail:

References:

1. Chapter 1 to 4 J.S.R.Jang, C.T.Sun and E.Mizutani, “Neuro-Fuzzy and Soft

Computing”, PHI, 2004, Pearson Education 2004.

2. Chapter 6 & 7 S. Rajasekaran & GA Vijayalakshmi Pai “Neural Networks, Fuzzy
Logic, and Genetic Algorithms synthesis and application”, PHI

3. Timothy J.Ross, “Fuzzy Logic with Engineering Applications”, McGraw-Hill,

International Editions, Electrical Engineering Series, Singapore, 1997.

4. Internet sources.

http://www.indiastudychannel.com/resources/35372-CS-SOFT-COMPUTING-Syllabus-Anna-University.aspx

MODULE-II (10 HOURS)

Neural networks: Single layer networks, Perceptrons: Adaline, Mutilayer Perceptrons
Supervised Learning, Back-propagation, LM Method, Radial Basis Function Networks,
Unsupervised Learning Neural Networks, Competitive Learning Networks, Kohonen Self-
Organizing Networks, Learning Vector Quantization, Hebbian Learning. Recurrent neural
networks,. Adaptive neuro-fuzzy information; systems (ANFIS), Hybrid Learning Algorithm,
Applications to control and pattern recognition.

LECTURE-1

NEURAL NETWORK INTRODUCTION:

What is a neuron? A neuron is the basic processing unit in a neural network sitting on our

brain. It consists of

1. Nucleus-

2. Axon- Output node

3. Dendrites-Input node

4. Synaptic junction

The dynamics of this synaptic junction is complex. We can see the signal inputs from the
action of a neuron and through synaptic junction an output is actuated which is carried over
through dendrites to another neuron. Here, these are the neurotransmitters. We learned from
our experience that these synaptic junctions are either reinforced or in the sense they behave
in such a way that the output of synaptic junction may excite a neuron or inhibit the neuron.
This reinforcement of the synaptic weight is a concept that has been taken to artificial neural
model.

The objective is to create artificial machine and this artificial neural networks are motivated
by certain features that are observed in human brain, like as we said earlier, parallel
distributed information processing.

Fig. ANN model

Artificial neural networks are among the most powerful learning models. They have the

versatility to approximate a wide range of complex functions representing multi-dimensional

input-output maps. Neural networks also have inherent adaptability, and can perform robustly

even in noisy environments.

An Artificial Neural Network (ANN) is an information processing paradigm that is inspired

by the way biological nervous systems, such as the brain, process information. The key

element of this paradigm is the novel structure of the information processing system. It is

composed of a large number of highly interconnected simple processing elements (neurons)

working in unison to solve specific problems. ANNs, like people, learn by example. An ANN

is configured for a specific application, such as pattern recognition or data classification,

through a learning process. Learning in biological systems involves adjustments to the

synaptic connections that exist between the neurons. This is true of ANNs as well. ANNs can

process information at a great speed owing to their highly massive parallelism.

A trained neural network can be thought of as an "expert" in the category of information it

has been given to analyse. This expert can then be used to provide projections given new

situations of interest and answer "what if" questions.

 Advantages of ANN:

1. Adaptive learning: An ability to learn how to do tasks based on the data given for training

or initial experience.

2. Self-Organisation: An ANN can create its own organisation or representation of the

information it receives during learning time.

3. Real Time Operation: ANN computations may be carried out in parallel, and special

hardware devices are being designed and manufactured which take advantage of this

capability.

4. Fault Tolerance via Redundant Information Coding: Partial destruction of a network leads

to the corresponding degradation of performance. However, some network capabilities may

be retained even with major network damage.

Table- Difference between the brain and a digital Computer

Differences human brain & ANN:

1. Computer has such fast speed of GHz, a traditional computer, however, when it
comes to certain processing like pattern recognition and language understanding, the
brain is very fast.

2. Intelligence and self-awareness, are absent in an artificial machine.

Fig. An artificial neuron

An Artificial Neuron:

Basic computational unit in an artificial neural network is neuron. Obviously, it has to be an

artificial neuron.

Fig. An artificial Neuron in linear NN

This artificial neuron has three basic elements:

1. Nodes,

2. Weights and

3. Activation function.

Between input nodes and output nodes, there are synaptic weights w
1
, w

2
, w

3
, w

4
, w

5
and w

6.

There can be as many weights and these weights are multiplied with the signal as they reach

the output unit, where the output is simply sum of the signal multiplied with the weights and

then this output goes to an activation function f.

Fig. Basic processing unit- the neuron

In a simple neuron, if input signals be x
1,

x
2,

x
n

with weights w
1
, w

2
and w

n.
The weighted sum

will activate this total output by an activation function f. That is your output. What you are

seeing is actually a nonlinear map from input vector x
i
to output y. A single neuron has single

output but multiple inputs. Inputs are multiple for a single neuron and the output is unique, y

and this output y and the input bear a nonlinear relationship, by f. Neural networks can be

built using this single neuron. We can use the single neuron and build neural networks.

Analogy to brain:

Artificial Neural Network (ANN) is a system which performs information processing. An

ANN resembles or it can be considered as a generalization of mathematical model of human

brain assuming that

1. Information processing occurs at many simple elements called neurons.

2. Signals are passed between neurons over connection links.

3. Each connection link has an associated weight, which in a typical neural net

multiplies the signal transmitted.

ANN is built with basic units called neurons which greatly resemble the neurons of human

brain. A neural net consists of a large number of simple processing elements called neurons.

Each neuron applies an activation function to its net input to determine its output signal.

Every neuron is connected to other neurons by means of directed communication links, each

with an associated weight. Each neuron has an internal state called its activation level, which

is a function of the inputs it has received. As and when the neuron receives the signal, it gets

added up and when the cumulative signal reaches the activation level the neuron sends an

output. Till then it keeps receiving the input. So activation level can be considered as a

threshold value for us to understand.

In general, a neural network is characterized by

1. Pattern of connections between the neurons called its architecture

2. Method of determining the weights on the connections called its training or learning

algorithm

3. Its internal state called its Activation function.

The arrangement of neurons into layers and the connection patterns within and between

layers is called the net architecture. A neural net in which the signals flow from the input

units to the output units in a forward direction is called feed forward nets.

Interconnected competitive net in which there are closed loop signal paths from a unit back to

it is called a recurrent network. In addition to architecture, the method of setting the values of

the weights called training is an important characteristic of neural nets. Based on the training

methodology used neural nets can be distinguished into supervised or unsupervised neural

nets. For a neural net with supervised training, the training is accomplished by presenting a

sequence of training vectors or patterns each with an associated target output vector. The

weights are then adjusted according to a learning algorithm. For neural nets with

unsupervised training, a sequence of input vectors is provided, but no target vectors are

specified. The net modifies the weights so that the most similar input vectors are assigned to

the same output unit. The neural net will produce a representative vector for each cluster

formed. Unsupervised learning is also used for other tasks, in addition to clustering.
LECTURE-2

Activation functions:

Architecture:

Fig. Architecture of multilayer Neural network

Artificial neural networks are represented by a set of nodes, often arranged in layers, and a set

of weighted directed links connecting them. The nodes are equivalent to neurons, while the

links denote synapses. The nodes are the information processing units and the links acts as

communicating media.

A neural network may have different layers of neurons like

1. input layer,

2. hidden layer,

3. output layer.

The input layer receives input data from the user and propagates a signal to the next layer

called the hidden layer. While doing so it multiplies the weight along with the input signal.

The hidden layer is a middle layer which lies between the input and the output layers. The

hidden layer with non linear activation function increases the ability of the neural network to

solve many problems than the case without the hidden layer. The output layer sends its

calculated output to the user from which decision can be made. Neural nets can also be

classified based on the above stated properties.

There are a wide variety of networks depending on the nature of information processing

carried out at individual nodes, the topology of the links, and the algorithm for adaptation of

link weights. Some of the popular among them include:

Perceptron: Definition: It‟s a step function based on a linear combination of real-valued

inputs. If the combination is above a threshold it outputs a 1, otherwise it outputs a –1. This

consists of a single neuron with multiple inputs and a single output. It has restricted

information processing capability. The information processing is done through a transfer

function which is either linear or non-linear.

Fig. A perceptron

A perceptron can learn only examples that are called “linearly separable”. These are

examples that can be perfectly separated by a hyperplane.

Perceptrons can learn many boolean functions: AND, OR, NAND, NOR, but not XOR

However, every boolean function can be represented with a perceptron network that has two

levels of depth or more.

The weights of a perceptron implementing the AND function is shown below.

Fig. AND operation on inputs by a single perceptron

Multi-layered Perceptron (MLP): It has a layered architecture consisting of input, hidden

and output layers. Each layer consists of a number of perceptrons. The output of each layer is

transmitted to the input of nodes in other layers through weighted links. Usually, this

transmission is done only to nodes of the next layer, leading to what are known as feed

forward networks. MLPs were proposed to extend the limited information processing

capabilities of simple perceptrons, and are highly versatile in terms of their approximation

ability. Training or weight adaptation is done in MLPs using supervised backpropagation

learning.

Adding a hidden layer:

The perceptron, which has no hidden layers, can classify only linearly separable patterns.

The MLP, with at least 1 hidden layer can classify any linearly non-separable classes also.

An MLP can approximate any continuous multivariate function to any degree of accuracy,

provided there are sufficiently many hidden neurons (Cybenko, 1988; Hornik et al, 1989). A

more precise formulation is given below.

A serious limitation disappears suddenly by adding a single hidden layer.

It can easily be shown that the XOR problem which was not solvable by a Perceptron can be

solved by a MLP with a single hidden layer containing two neurons.

 Figure 6.2.1.1: MLP for solving Xor

Recurrent Neural Networks: RNN topology involves backward links from output to the

input and hidden layers. The notion of time is encoded in the RNN information processing

scheme. They are thus used in applications like speech processing where inputs are time

sequences data.

Fig. Multilayer feed back network (Recurrent Neural Network)

Self-Organizing Maps: SOMs or Kohonen networks have a grid topology, wit unequal grid

weights. The topology of the grid provides a low dimensional visualization of the data

distribution. These are thus used in applications which typically involve organization and

human browsing of a large volume of data. Learning is performed using a winner take all

strategy in a unsupervised mode. It is described in detail later.

Single layer Network:

A neural net with only input layer and output layer is called single layer neural network. A

neural network with input layer, one or more hidden layers and an output layer is called a

multilayer neural network. A single layer network has limited capabilities when compared to

the multilayer neural networks.

Fig. Single Layer feed foreward Neural Network

LECTURE-3

Steps in developing NN:

1.1. Network formation

Neural network consists of an input layer, an output layer and a hidden layer. While a neural

network is constructed, the number of neurons in each layer has to be fixed. The input layer

will have neurons whose number will be equal to the number of features extracted. The

number of neurons in the output layer will be equal to the number of pattern classes. The

number of neurons in the hidden layer is decided by trial and error basis. With a minimum

number of neurons in the hidden layer, the neural network will be constructed and the

convergence will be checked for. Then the error will be noted. The number of neurons for

which the error is minimum, can be taken and will be checked for reduced error criterion.

1.2. Data preprocessing and normalization

Data selection and pre processing can be a demanding and intricate task. Neural net is as

good as the input data used to train it. If important data inputs are missing, then the effect on

the neural network‟s performance can be significant. The most appropriate raw input data

must be preprocessed. Otherwise the neural network will not produce accurate results.

Transformation and normalization are two widely used preprocessing methods.

Transformation involves manipulating raw data inputs to create a single input to a net, while

normalization is a transformation performed on a single data input to distribute the data

evenly and scale it into an acceptable range for the network. Knowledge of the domain is

important in choosing preprocessing methods to highlight the features in the data, which can

increase the ability of the network to learn the association between inputs and outputs. Data

normalization is the final preprocessing step. In normalizing data, the goal is to ensure that

the statistical distribution of values should be scaled to match the range of the input neurons.

The simplest method of normalization can be done using the formula

X normalized = (X-μ) / σ where μ and σ are the mean and standard deviation of the input

data.

Perceptron Learning

Learning a perceptron means finding the right values for W. The hypothesis space of a

perceptron is the space of all weight vectors.

The perceptron learning algorithm can be stated as below.

1. Assign random values to the weight vector

2. Apply the weight update rule to every training example

3. Are all training examples correctly classified?

a. Yes. Quit

b. No. Go back to Step 2.

There are two popular weight update rules.

i) The perceptron rule, and

ii) Delta rule

The Perceptron Rule

For a new training example X = (x1, x2, …, xn), update each weight according to this rule:

wi = wi + Δwi

Where Δwi = η (t-o) xi

t: target output

o: output generated by the perceptron

η: constant called the learning rate (e.g., 0.1)

Comments about the perceptron training rule:

Example means training data.

• If the example is correctly classified the term (t-o) equals zero, and no update on the weight

is necessary.

• If the perceptron outputs –1 and the real answer is 1, the weight is increased.

• If the perceptron outputs a 1 and the real answer is -1, the weight is decreased.

• Provided the examples are linearly separable and a small value for η is used, the rule is

proved to classify all training examples correctly (i.e, is consistent with the training data).

The Delta Rule

What happens if the examples are not linearly separable?

To address this situation we try to approximate the real concept using the delta rule.

The key idea is to use a gradient descent search. We will try to minimize the following error:

E = ½ Σi (ti – oi) 2

where the sum goes over all training examples. Here oi is the inner product WX and not

sgn(WX) as with the perceptron rule. The idea is to find a minimum in the space of weights

and the error function E.

The delta rule is as follows:

For a new training example X = (x1, x2, …, xn), update each weight according to this rule:

wi = wi + Δwi

Where Δwi = -η E‟(W)/wi

η: learning rate (e.g., 0.1)

It is easy to see that

E‟(W)/ wi = Σi (ti – oi) (-xi)

So that gives us the following equation:

wi = η Σi (ti – oi) xi

There are two differences between the perceptron and the delta rule. The perceptron is based

on an output from a step function, whereas the delta rule uses the linear combination of inputs

directly. The perceptron is guaranteed to converge to a consistent hypothesis assuming the

data is linearly separable. The delta rules converges in the limit but it does not need the

condition of linearly separable data.

There are two main difficulties with the gradient descent method:

1. Convergence to a minimum may take a long time.

2. There is no guarantee we will find the global minimum.

These are handled by using momentum terms and random perturbations to the weight vectors.

LECTURE-4

ADALINE & MADALINE:

Tne Adaline networks(ADAptive LINear Element) an d Madaline (Multiple Adaline) were

developed by Widrow. The structures use neurons and step/ sigmoidal activation function.

ADALINE has one output neuron but MADALINE has many. The learning is different from

a perceptron. It is here by Widrow-Hoff or LMS (Least Mean Square error) rule. Analogical

input or out put can be found by this network as minimum error function is searched befor

applying activation function.

ADALINE:

The structure includes an adaptive linear combiner (ALC) to obtain linear response that can

be applied to other elements of bipolar commutation. IF O/P of ALC is +ve response of

ADALINE is +1, and if –ve result of ADALINE is -1. It is represented by:

 (3.11)

Fig. MADALINE network

LECTURE-5

The Multi-layered Perceptron training:

Improvements over Perceptron:

1) Smooth nonlinearity - sigmoid

2) 1 or more hidden layers

Training the hidden layer:

Not obvious how to train the hidden layer parameters.

The error term is meaningful only to the weights connected to the output layer. How to adjust

hidden layer connections so as to reduce output error? – credit assignment problem.

Any connection can be adapted by taking a full partial derivative over the error function, but

then to update a single weight in the first stage we need information about distant

neurons/connections close to the output layer (locality rule is violated). In a large network

with many layers, this implies that information is exchanged over distant elements of the

network though they are not directly connected. Such an algorithm may be mathematically

valid, but is biologically unrealistic.

The Backpropagation Algorithm:

As in Perceptron, this training algorithm involves 2 passes:

The forward pass – outputs of various layers are computed

The backward pass – weight corrections are computed

Consider a simple 3-layer network with a single neuron in each layer.

 Therefore,

k

f

j

f

jk xw  (6.2.2.1.16)

Similarly the update rule for the threshold term is,
f

j

f

j   (6.2.2.1.17)

Fig. Training using Back propagation algorithm

Traning:

Randomly initialize weights.

Train network using backprop eqns.

Stop training when error is sufficiently low and freeze the weights.

Testing

Start using the network.

Merits of MLP trained by BP:

a) A general solution to a large class of problems.

b) With sufficient number of hidden layer nodes, MLP can approximate arbitrary target

functions.

c) Backprop applies for arbitrary number of layers, partial connectivity (no loops).

d) Training is local both in time and space – parallel implementation made easy.

e) Hidden units act as “feature detectors.”

f) Good when no model is available

Problems with MLP trained by BP:

a) Blackbox approach

b) Limits of generalization not clear

c) Hard to incorporate prior knowledge of the model into the network

d) slow training

e) local minima

LECTURE-6

Architectures of MLP:

If there is no nonlinearity then an MLP can be reduced to a linear neuron.

1. Universal Approximator:

For the above theorem to be valid, the sigmoid function g(.) has to satisfy some conditions. It

must be: 1) non-constant, 2) bounded, 3) monotone-increasing and 4) continuous.

All the four transfer functions described in the section on Perceptrons satisfy conditions #1,2

and 3. But the hardlimiting nonlinearities are not continuous. Therefore, the logistic function

or the tanh function are suitable for use as sigmoids in MLPs.

2. In general more layers/nodes greater network complexity

Although 3 hidden layers with full connectivity are enough to learn any function often more

hidden layers and/or special architectures are used.

More hidden layers and/or hidden nodes:

3-layer network:

Arbitrary continuous function over a finite domain

4-layer network

Neurons in a 3-layer architecture tend to interact globally.

In a complex situation it is hard to improve the approximation at one point without worsening

it at another.

So in a 4-layer architecture:

1
st

hidden layer nodes are combined to construct locally sensitive neurons in the second

hidden layer.

Discontinuous functions:

learns discontinuous (inverse function of continuous function) functions also (Sontag, 1992)

For hard-limiting threshold functions:

1
st

hidden layer: semi-infinite regions separated by a hyper-plane

2
nd

hidden layer: convex regions

3
rd

hidden layer: non-convex regions also

Training MLP:

1. Initialization: is VERY important.

g‟(.) appears on the right side of all weight update rules.er sections 6.1.1, 6.1.2, 6.2.1). Note

that g‟(.) is high at the origin and falls on both sides. Therefore most learning happens when

the net input (h) to the neurons is close to 0. Hence it is desirable to make initial weights

small. A general rule for initialization of input weights for a given neuron is:

2. Batch mode and Sequential mode:

Epoch: presentation of all training patterns is called an epoch.

Batch mode:

Updating network weights once every epoch is called batch mode update.

- memory intensive

- greater chance of getting stuck in local minima

Sequential mode:

Updating the network weights after every presentation of a data point is sequential mode of

update.

- lesser memory requirement

- The random order of presentation of input patterns acts as a noise source lesser chance of

local minima

Rate of learning:

We have already seen the tradeoffs involved in choice of a learning rate.

Small learning rate η,approximate original continuous domain equations more closely but

slows down learning.

Large learning rate η ,oorer approximation of original equations. Error may not decrease

monotonically and may even oscillate. But learning is faster..

A good thumb rule for choosing eta 'η':

η = 1/m

Where „m‟ is the number of inputs to a neuron. This rule assumes that there are different η s

for different neurons.

3. Important tip relating learning rate and error surface:

Rough error surface,slow down, low η

Smooth (flat) error surface, speed up, high η

i) Momentum:

a) If |a| <1, the above time-series is convergent.

b) If the sign of the gradient remains the same over consecutive iterations the weighted sum

delta w
ji

grows exponentially i.e., accelerate when the terrain is clear.

c) If the gradient changes sign in consecutive iterations, delta w
ji

shrinks in magnitude i.e.,

slow down when the terrain is rough.

ii) Separate eta for each weight:

a) Separate η for each weight

b) Every eta varies with time

c) If delta(w) changes sign several time in the past few iters, decrease η

d) If delta(w) doesn‟t change sign in the past few iters, increase η

Stopping Criteria: when do we stop training?

a) Error < a minimum.

b) Rate of change in error averaged over an epoch < a minimum.

c) Magnitude of gradient ||g(w)|| < a minimum.

d) When performance over a test set has peaked.

Premature Saturation:

All the weight modification activity happens only when |h| is within certain limits.

g‟(h) ≈ 0, or delta(w) = 0, for large |h|.

NN gets stuck in a shallow local minimum.

Solutions:

1) - Keep a copy of weights

- Retract to pre-saturation state

- Perturb weights, decrease η and proceed

2) - Reduce sigmoid gain (lambda) initially

e) Increase lambda gradually as error is minimized

Network doesn‟t get stuck, but never settles either.

Testing/generalization:
Idea of overfitting or overtraining:

Using too many hidden nodes, may cause overtraining. The network might just learn noise

and generalize poorly.

Example of polynomial interpolation:

Consider a data set generated from a quadratic function with noise added. A linear fit is likely

to give a large error. Best fit is obtained with a quadratic function. Fit 10
th

degree might give

a low error but is likely to learn the variations due to noise also. Such a fit is likely to do

poorly on a test data set. This is called overfitting or poor generalization.

This happens because there are many ways of generalizing from a given training data set.

The above Venn diagram illustrates the possibility of generalizing in multiple ways from a

given training data set. U is the universe of all possible input-output patterns. F (the ellipse)

represents the set of I/O pairs that define the function to be learnt by the mlp. T (circle)

denotes the training data set which is a subset of F. X denotes the test data set. The dotted

rectangle denotes the actual function learnt by the NN, which is consistent with the training

set T, but is completely non-overlapping with the test set X, and very different from the

unknown function F.

Applications of MLP

Three applications of MLPs that simulate aspects of sensory, motor or cognitive functions are

described.

1. Nettalk

2. Past tense learning

3. Autonomous Land Vehicle in a Neural Network (ALVINN)
LECTURE-6

Multilayer Feed-Foreward Network:

Fig. Characteristics of Multilayer feed-foreward network

The algorithm that was derived using gradient descent for nonlinear neural networks with

nonlinear activation function is popularly known as back propagation learning algorithm,

although the learning algorithm still is derived using gradient descent rule.

Multilayer feed forward network has more hidden layers and again, when I say feed forward

network, the connections are all allowed only from any layer to its succeeding layer, but the

connections are not allowed from any layer to its preceding layer. The example is you see

here there are four layers. These are all inputs. First hidden layer, second hidden layer, third

hidden layer and this is output layer. When we say the number of layers, we do not count the

input layer as one of the layers. When I say two layered network, then I have only one hidden

layer and next layer becomes output layer.

Fig. Multilayer feed foreward network

This particular configuration means there are sub-units, sub-neurons here and this particular

configuration, if I connect you will see why I say feed forward network, because I am able to

connect any layer from its preceding layer. That means connections are allowed from the

preceding layer to any layer, but cannot allow the feedback connection. (Refer Slide Time:

30:54) This is called feedback connection; this is not allowed. This is allowed. From this

layer, I can connect to this layer. This is allowed, but I cannot allow from this layer to

connect to this layer. These are called feedback connections. They are not allowed and that is

why this is known as feed forward network.

Today, we will derive a two-layered feed forward neural network with sigmoid activation

function. We can very easily see that this is 1 layer; this is the only hidden layer and this is

the only output layer; output layer is always only one.

We have a certain convention that we will put while deriving a back propagation learning

algorithm for this. The same simple principle; given training data, we allow the input to pass

through the network, compute the error here, use the gradient descent rule and the back

propagated error are used to modify the weights here that is between output layer and hidden

layer and again another form of back propagated error here has to be used for modification of

the weights between input layer and hidden layer. This is again the convention that we will

use.

Fig. The Gradient descent rule

After choosing the weights of the network randomly, the backpropagation algorithm is used

to compute the necessary corrections. The algorithm can be decomposed in the following four

steps:

i) Feed-forward computation

ii) Backpropagation to the output layer

iii) Backpropagation to the hidden layer

iv) Weight updates

The algorithm is stopped when the value of the error function has become sufficiently small.

In the case of p > 1 input-output patterns, an extended network is used to compute the error

function for each of them separately. The weight corrections The Backpropagation Algorithm

are computed for each pattern and so we get, for example, for weight w(1)ij the corrections

The necessary update in the gradient direction is then

We speak of batch or off-line updates when the weight corrections are made in this way.

Often, however, the weight updates are made sequentially after each pattern presentation (this

is called on-line training). In this case the corrections do not exactly follow the negative

gradient direction, but if the training patterns are selected randomly the search direction

oscillates around the exact gradient direction and, on average, the algorithm implements a

form of descent in the error function. The rationale for using on-line training is that adding

some noise to the gradient direction can help to avoid falling into shallow local minima of the

error function. Also, when the training set consists of thousands of training patterns, it is very

expensive to compute the exact gradient direction since each epoch (one round of

presentation of all patterns to the network) consists of many feed-forward passes and on-line

training becomes more efficient.

Back Propagation Neural Network

Backpropagation is a training method used for a multi layer neural network. It is also called

the generalized delta rule. It is a gradient descent method which minimizes the total squared

error of the output computed by the net. Any neural network is expected to respond correctly

to the input patterns that are used for training which is termed as memorization and it should

respond reasonably to input that is similar to but not the same as the samples used for training

which is called generalization. The training of a neural network by back propagation takes

place in three stages 1. Feedforward of the input pattern 2. Calculation and Back propagation

of the associated error 3. Adjustments of the weights After the neural network is trained, the

neural network has to compute the feedforward phase only. Even if the training is slow, the

trained net can produce its output immediately.

Architecture

A multi layer neural network with one layer of hidden unitss is shown in the figure. The

output units and the hidden units can have biases. These bias terms are like weights on

connections from units whose output is always 1. During feedforward the signals flow in the

forward direction i.e. from input unit to hidden unit and finally to the output unit. During

back propagation phase of learning, the signals flow in the reverse direction.

Algorithm

The training involves three stages 1. Feedforward of the input training pattern 2. Back

propagation of the associated error 3. Adjustments of the weights. During feedforward, each

input unit (Xi) receives an input signal and sends this signal to each of the hidden units Z1,

Z2, …Zn. Each hidden unit computes its activation and sends its signal to each output unit.

Each output unit computes its activation to compute the output or the response of the neural

net for the given input pattern.

During training, each output unit compares its computed activation yk, with its target value tk

to determine the associated error for the particular pattern. Based on this error the factor ∂k

for all m values are computed. This computed ∂k is used to propagate the error at the output

unit Yk back to all units in the hidden layer. At a later stage it is also used for updation of

weights between the output and the hidden layer. In the same way ∂j for all p values are

computed for each hidden unit Zj. The values of ∂j are not sent back to the input units but are

used to update the weights between the hidden layer and the input layer. Once all the ∂ factrs

are known, the weights for all layers are changed simultaneously. The adjustment to all

weights wjk is based on the factor ∂k and the activation zj of the hidden unit Zj. The change

in weight to the connection between the input layer and the hidden layer is based on ∂j and

the activation xi of the input unit.

Activation Function
An activation function for a back propagation net should have important characteristics. It

should be continuous, Differentiable and monotonically non- decreasing. For computational

efficiency, it is better if the derivative is easy to calculate. For the commonly used activation

function, the derivative can be expressed in terms of the value of the function itself. The

function is expected to saturate asymptotically. The commonly used activation function is the

binary sigmoidal function.

Training Algorithm

The activation function used for a back propagation neural network can be either a bipolar

sigmoid or a binary sigmoid. The form of data plays an important role in choosing the type of

the activation function. Because of the relationship between the value of the function and its

derivative, additional evaluations of exponential functions are not required to be computed.

Algorithm

Step 0: Initialize weights

 Step 1: While stopping condition is false, do steps 2 to 9

Step 2: For each training pair, do steps 3 - 8 Feed forward

 Step 3: Input unit receives input signal and propagates it to all units in the hidden layer

 Step 4: Each hidden unit sums its weighted input signals

Step 5: Each output unit sums its weighted input signals and applied its activation function to

compute its output signal.

Backpropagation Step 6: Each output unit receives a target pattern corresponding to the input

training pattern, computes its error information term δk = (tk – yk) f‟ (y_ink) Calculates its

bias correction term ΔWok = αδk And sends δk to units in the layer below

Step 7: Each hidden unit sums its delta inputs Multiplies by the derivative of its activation

function to calculate its error information term Calculates its weight correction term Δvij =

αδjxi And calculates its bias correction term Δvoj = αδj Update weights and biases

Step 8: Each output unit updates its bias and weights Wjk(new) = wjk(old) + Δ wjk Each

hidden unit updates its bias and weights Vij (new) = vij (old) + Δvij

Step9:Test stopping condition

LECTURE-7

Radial Basis Function Networks:

Fig. RBF network

• These are 3-layer networks that can approximate any continuous function through a basis

function expansion.

• The basis functions here (which are data dependent as earlier) exhibit some radial

symmetry.

• These networks have the so called perfect interpolation property.

The function represented by an RBF network with p hidden nodes can be written as

 X is the input to the network.

• wj is weight from j
th

 hidden node to the output.

• Á (||X − j ||) is the output of the jth hidden node

and j is the parameter vector associated with j
th

hidden node, j = 1, ・ ・ ・ , p.

A very popular model is the Gaussian RBF network.

• Here the output is written as

• The j is called the center of the j

th
 hidden or RBF node and  is called the width.

• We can have different  for different hidden nodes.

We next consider learning the parameters of a RBF network from training samples.

• Let {(Xi, di), i = 1, ・ ・ ・ ,N} be the training set.

• Suppose we are using the Gaussian RBF.

• Then we need to learn the centers (j) and widths () of the hidden nodes and the weights

into the output node (wj).

Like earlier, we can find parameters to minimize empirical risk under squared error loss

function.

• Same as minimizing sum of squares of errors. Let

J is a function of , wj , j , j = 1, ・ ・ ・ , p.

We can find the weights/parameters of the network to minimize J.

• To minimize J, we can use the standard iterative algorithm of gradient descent.

• This needs computation of gradient which can be done directly from the expression for J.

• For this network structure there are no special methods to evaluate all the needed partial

derivatives. Such a gradient descent algorithm is certainly one method of learning an RBF

network from given training data.

• This is a general-purpose method for learning an RBF network.

• Like in the earlier case, we have to fix p, the number of hidden nodes.

• Such procedure would have the usual problems of converging to a local minimum of the

error function.

• There are also other methods of learning an RBF network.

• If we have the basis functions, Áj , then it is exactly same as a linear model and we can use

standard linear least squares method to learn wj .

• To fix Áj , we need to essentially fix j (and may be ).

• So, if we can somehow fix centers and widths of the RBF nodes, then we can learn the wj

very easily.

As we have discussed earlier, these RBF networks use „local‟ representations.

• What this means is that j should be „representative‟ points of the feature space and they

should „cover‟ the feature space.

• Essentially, the proof that these networks can represent any continuous function is based on

having such centers for RBF nodes.

• We can use such ideas to formulate methods for fixing centers of RBF nodes.

One simple method of choosing centers, j , is to randomly choose p of the training

examples.

• We know that with N hidden nodes and centers same as training examples, we get perfect

interpolation.

• Hence we can take some of the training examples as centers.

• There can be some variations on this theme.

• However, such a method does not, in general, ensure that we have representative points in

the feature space as centers.

When we have p hidden nodes, we need p „centers‟.

• Hence we are looking for p number of „representative‟points in the feature space.

• The only information we have are the N training examples.

• Hence the problem is:

given N points, Xi, i = 1, ・ ・ ・ ,N in <m, find p „representative‟ points in <m.

• This is the „clustering problem‟ This is a problem of forming the data into p clusters.

• We can take the „cluster centers‟ to be the representative points.

• The kind of clusters we get depends on how we want to formalize the notion of the p points

being representative of the N data points.

• We now look at one notion of clustering that is popular.

Let 1 , ・ ・ ・ , p represent the p cluster centers.

• Now we need an objective function that specifies how representative these are of the data

Xi, i = 1, ・ ・ ・ ,N.

Now we can define a cost function as

• The J is a function of j , j = 1, ・ ・ ・ , p. (Note that Sj are also functions of the j ‟s).

• For a given set of centers, { j }, J gives us the total error in approximating each of the

training data by its nearest cluster center.

• Hence we want to choose centers to minimize J We now discuss a simple algorithm to find

centers to minimize J.

• This is known as K-means clustering algorithm.

(Originally proposed by Lloyd in the context of vector quantization).

• We are given N data points, Xi, i = 1, ・ ・ ・ ,N.

We want to find p cluster centers j , j = 1, ・ ・ ・ , p, to minimize J.

• We first rewrite J in a different form to motivate our algorithm.

We think of the problem as finding the centers 1 , ・ ・ ・ , p and assigning Xi to these

clusters.

• Let j , n = 1, ・ ・ ・ ,N, j = 1, ・ ・ ・ , p be indicators of the cluster assignment.

• That is, if we assign X
n
 to cluster j, then we would have 1 = 1 and p = 0,

• Now we can rewrite J as

We now have to find a way of minimizing J wrt all nj and j .

Note that for a given n, nj is 1 for exactly one j (and it is zero otherwise).

• Thus the μj would be the mean of all data vectors assigned to the j
th

 cluster.

• This is the reason for the name K-means clustering.

• What we derived are optimum values for nj keeping

μj fixed and optimum values for μj keeping nj fixed.

• Hence, in an algorithm we do this repeatedly.

• This is like the EM algorithm.

LECTURE-8

Experiences or learning:

Learning algorithms use experiences in the form of perceptions or perception action pairs to

improve their performance. The nature of experiences available varies with applications.

Some common situations are described below.

Supervised learning: In supervised learning a teacher or oracle is available which provides

the desired action corresponding to a perception. A set of perception action pair provides

what is called a training set. Examples include an automated vehicle where a set of vision

inputs and the corresponding steering actions are available to the learner.

Fig. Supervised learning

Unsupervised learning: In unsupervised learning no teacher is available. The learner only

discovers persistent patterns in the data consisting of a collection of perceptions. This is also

called exploratory learning. Finding out malicious network attacks from a sequence of

anomalous data packets is an example of unsupervised learning.

Active learning: Here not only a teacher is available, the learner has the freedom to ask the

teacher for suitable perception-action example pairs which will help the learner to improve its

performance. Consider a news recommender system which tries to learn an users preferences

and categorize news articles as interesting or uninteresting to the user. The system may

present a particular article (of which it is not sure) to the user and ask whether it is interesting

or not.

Reinforcement learning: In reinforcement learning a teacher is available, but the teacher

instead of directly providing the desired action corresponding to a perception, return reward

and punishment to the learner for its action corresponding to a perception. Examples include

a robot in a unknown terrain where its get a punishment when its hits an obstacle and reward

when it moves smoothly.

In order to design a learning system the designer has to make the following choices based on

the application.

LECTURE-9

Unsupervised Learning in Neural Networks:

Unsupervised learning mechanisms differ from supervised learning in that there is no

"teacher" to instruct the network.

 Competitive Learning:

Competitive learning is a form of unsupervised learning which performs clustering over the

input data. In a competitive learning network with n-output neurons, each output neuron is

associated with a cluster. When a data point from a cluster is presented to the network, only

the neuron corresponding to that cluster responds, while all other neurons remain silent. The

single neuron that responds is often called a “winner” and therefore a competitive learning

network of the kind just described is also known as a “winner-take-all” network.

It is easiest to introduce CL mechanism as a slight variation of Hebb‟s rule.

Kohonen Self-organizing Map:

It is also known as Kohonen feature map or topology-preserving map or Kohonen Self-

organizing .

Information is often represented spatially in the two-dimensional neuronal sheets in the brain,

in both the cortex and subcortical structures. We have learnt about the somtosensory, motor

and visual maps in the corresponding sensory cortices in the brain. A map, in its ordinary

sense, denotes a two-dimensional representation of a real-world domain, such that nearby

points in the domain are mapped onto nearby points in the map.

Due to this “adjacency-preserving” property, these maps are also called topographic maps.

Self-organizing maps (SOM) are models of the topographic maps of the brain, first proposed

by Teovo Kohonen.

The SOM model can be presented as an extension of the competitive learning model

described in the previous section. It is constructed by adding a biologically-relevant feature

that is not originally present in the competitive learning network.

A key property of the SOM is that nearby or similar inputs activate nearby neurons in the

map. The competitive learning network does not have this property.

Consider a hypothetical competitive learning network with 3 output neurons. The input space

is two-dimensional. The weight vectors w1, w2, w3 lie on a line as shown in Fig., with w1 in

between w2 and w3. Note that such an arrangement is possible since there is no relation

between the spatial position of the weight vectors and their indices.

Fig. weight vectors and their indices when not related

The essence of the modification proposed in the SOM model, is a mechanism that ensures

that the weight vectors remain spatially ordered, while they also move towards the data points

that activate them maximally.

Unlike a competitive learning network, which consists of a single row of output neurons, a

SOM consists of a m-dimensional grid of neurons. Usually two-dimensional SOMs are

studied since SOMs were originally inspired by the two-dimensional maps in the brain. The

topology of the grid is usually rectangular, though sometimes hexagonal topologies (Fig.) are

also considered.

Figure: Rectangular and hexagonal trajectories of Kohonen‟s network

As in the case of competitive learning, the weight vector of the winner is moved towards the

input, x. But addition, neurons close to the winner in the SOM are also moved towards the

input, x, but with a lesser learning rate. Neurons that are nearby in the SOM are defined by a

neighborhood N .

Fig. For the neuron in white (center) the neurons in red represent the neighborhood if we

consider the neighborhood radius to be 1

Neighborhood size is large in the early stages, and is decreased gradually as training

progresses.

Learning Vector Quantization(LVQ):

Vector quantization is noting but clustering, where Given a set of vectors {x}, find a set of

representative vectors {wm; 1 ≤m ≤M} such that each x is quantized into a particular wm.

{wm} locate at the mean (centroid) of the density distribution of each cluster. LVQ is an

unsupervised pattern classifier where the actual class membership information is not used.

Fig. Clusters of data

Applications of LVQ:

Speech Recognition

• Robot Arm control

• Industrial process control

• automated synthesis of digital systems

• channel equalization for telecommunication

• image compression

• radar classification of sea-ice

• optimization problems

• sentence understanding

• classification of insect courtship songs

LECTURE-10

 Linear neuron model: (Hebbian Learning)

Hebb described a simple learning method of synaptic weight change. In Hebbian learning,

when 2 cells have strong responses, and fire simultaneously, their connection strength or

weight increases. The weight increase is proportional to the frequency at which they fire

together.

Fig. A simple network topology for Hebbian Learning, where Wij resides between two

neurons

Where η is the learning rate, (.)f is the neuron function, x is the input to the jth neuron.

Since the weights are adjusted according to the correlation formula is a type of correlational

learning rule.

A sequence of learning patterns indexed by p is presented to the network. Initial weights are

taken zero. So updated weight after entire data set is:

Frequent input patterns have more impact on weights, giving largest output at end.

The objective function is maximized to maximize output.

This rule causes unconstrained growth of weights. Hebbian rule was modified by Oja by

normalization.

Modified Hebbian Learning:

For small learning rate expanding in Taylor‟s series weight update rule becomes

Here, a weight decay proportional to the squared output is added to maintain weight vector

unit length automatically.

LECTURE-11

ANFIS: Adaptive Neuro-Fuzzy Inference Systems:

ANFIS are a class of adaptive networks that are functionally equivalent to fuzzy inference

systems.

• ANFIS represent Sugeno & Tsukamoto fuzzymodels.

• ANFIS uses a hybrid learning algorithm

Fig. Architecture of ANFIS

Ol,i is the output of the i
th

 node of the layer l.

• Every node i in this layer is an adaptive node with a node function

O1,i = μAi(x) for i = 1, 2, or O1,i = μBi−2(x) for i = 3, 4

• x (or y) is the input node i and Ai (or Bi−2) is a linguistic label associated with this node

• Therefore O1,i is the membership grade of a fuzzy set (A1,A2,B1,B2).

Typical membership function is Gaussian.

Every node in this layer is a fixed node labelled Prod.

• The output is the product of all the incoming signals.

• O2,i = wi = μAi(x) ・ μBi(y), i = 1, 2

• Each node represents the fire strength of the rule

• Any other T-norm operator that perform the AND operator can be used

Every node in this layer is a fixed node labelled Norm.

• The ith node calculates the ratio of the ith rulet‟s firing strenght to the sum of all rulet‟s

firing strengths.

• O3,i = wi = wi w1+w2 , i = 1, 2

• Outputs are called normalized firing strengths.

Every node i in this layer is an adaptive node with a node function:

O4,1 = wifi = wi(px + qiy + ri)

• wi is the normalized firing strenght from layer 3.

• {pi, qi, ri} is the parameter set of this node.

• These are referred to as consequent parameters.

The single node in this layer is a fixed node labeled sum, which computes the overall output

as the summation of all incoming signals:

• overall output = O5,1 =Pi wifi = Pi wifi Pi wi

Hybrid Learning Algorithm:

The ANFIS can be trained by a hybrid learning algorithm presented by Jang in the chapter 8

of the book.

• In the forward pass the algorithm uses least-squares method to identify the consequent

parameters on the layer 4.

• In the backward pass the errors are propagated backward and the premise parameters are

updated by gradient descent.

Fig. Two passes in the hybrid learning algorithm for ANFIS.

Suppose that an adptive network has L layers and the kth layer has #(k) nodes.

• We can denote the node in the ith position of the kth layer by (k, i).

• The node function is denoted by Oki .

• Since the node output depends on its incoming signals and its parameter set (a, b, c), we

have

• Notice that Oki is used as both node output and node function. Assume that a training data

set has P entries.

• The error measure for the pth entry can be defined as the sum of the squared error

 Tm,p is the mth component of the p
th

 target.

• OLm,p is the m
th

 component the actual output vector.

• The overall error is

In order to implement the gradient descent in E we calculate the error rate E

O for the pth training data for each node output O.

• The error rate for the output note at (L, i) is

For the internal node at (k, i), the error rate can be derived by the chain rule:

where 1 ≤ k ≤ L − 1

• The error rate of an internal node is a linear combination of the error rates of the nodes in

the next layer.

Consider _ one of the parameters.

• Therefore

where S is the set of nodes

• The derivative of the overall error with respect to _ is

The update formula for  is

If the parameters are to be updated after each input-output pair (on-line training) then the

update formula is:

With the batch learning (off-line learning) the update formula is based on the derivative of

the overall error with respect to α:

Problems of the gradient descent are:

The method is slow.

• It is likely to be trapped in local minima.

Hybrid Learning Rule:

Combines:

• the gradient rule;

• the least squares estimate.

Considere that the adptive network has only one output.

• output = F(I, S)

• I is the vector of input variables.

• S is the set of parameters.

• F is the function implemented by the ANFIS.

• If there exists a function H such that the composite function H ◦ F is linear in some elements

of S then these elements can be identified by LSM.

More formally, if the parameter set S can be decomposed into two sets S = S1 ⊕ S2 (⊕

direct sum), such that H ◦ F is linear in the elements of S2

• then applying H to output = F(I, S) we have H(output) = H ◦ F(I, S) (7) which is linear in the

elements of S2.

• Given values of elements of S1, it is possible to plug P training data in equation 7.

• As a result we obtain a matrix equation A_ = y where _ is the unknown vector whose

elements are parameters in S2.

• This is the standard linear least-square problem.

Combining LSE and gradient descent:

- forward pass

In batch mode, each epoch is composed of a forward pass and a backward pass.

• In the forward pass an input vector is presented and the output is calculated creating a row

in the matrices A and y.

• The process is repeated for all training data and the parameters S2 are identified by BLS or

RLS.

• After S2 is identified the error for each pair is computed.

Combining LSE and gradient descent:

- backward pass

The derivative of the error measure with respect to each node output propagate from the

output toward the input.

• The derivatives are:

The parameters in S2 are updated by the gradient method

Applications of ANFIS:

1. Printed Character recognition

2. Inverse Kinematics

3. Nonlinear System identification

4. Channel Equalization

5. Feed back control system

6. Adaptive noise cancellation

References:

5. Chapter 8,9,11,12,19 J.S.R.Jang, C.T.Sun and E.Mizutani, “Neuro-Fuzzy and Soft

Computing”, PHI, 2004, Pearson Education 2004.

6. Chapter 2, 3 & 7 S. Rajasekaran & GA Vijayalakshmi Pai “Neural Networks, Fuzzy
Logic, and Genetic Algorithms synthesis and application”, PHI

7. Chapter 2& 3 Stamatios V. Kartalopoulos “Understanding Neural Networks and Fuzzy

Logic Basic concepts & Applications”, IEEE Press, PHI, New Delhi, 2004.

8. Internet sources.

MODULE-III (10 HOURS)

Derivative-free Optimization Genetic algorithms: Basic concepts, encoding, fitness
function, reproduction. Differences of GA and traditional optimization methods. Basic
genetic programming concepts Applications.

LECTURE-1

Introduction:

 Most real world optimization problems involve complexities like discrete, continuous or
mixed variables, multiple conflicting objectives, non-linearity, discontinuity and non-convex
region. The search space (design space) may be so large that global optimum cannot be found
in a reasonable time. The existing linear or nonlinear methods may not be efficient or
computationally inexpensive for solving such problems. Various stochastic search methods
like simulated annealing, evolutionary algorithms (EA) or hill climbing can be used in such
situations. EAs have the advantage of being applicable to any combination of complexities
(multi-objective, non-linearity etc) and also can be combined with any existing local search
or other methods. Various techniques which make use of EA approach are Genetic
Algorithms (GA), evolutionary programming, evolution strategy, learning classifier system
etc.

 The principle of Darwinian evolution theory i.e., survival of the fittest is evaluated by a
fitness function derived from objective function. Every individual in a population searches to
be the best according to a fitness function in its own way(randomly).

Basic Concepts:

Optimization means to make the objective function max or min. That means in evolutionary
computing where the individuals/ elements represent possible solutions, an element exists
such that the fitness of that element is the maximum or minimum among all others‟ fitness
depending on it is maximization or minimization problem.

Optimization can be classified as:

1. Deterministic-Uses derivative or gradient to reach final solution

2. Stochastic- Derivative free optimization, a type of random search, suitable for non-
linearity, discontinuity escape from local optima and non-convex region

Components of Genetic Algorithm:
The individuals are genes which encode a trait or a parameter. The design space is to be
converted to genetic space. It is parallel processing by a population used when single point
approach of traditional methods cannot find a possible solution with in the required time
frame.
Important common aspects of evolutionary/swarm optimization algorithms: It is an
iterative process where best solution is searched by a population in search space evaluating a
fitness function.
1. Search space-Space for all feasible solutions is called search space.
2. Solution- It is the point with maximum or minimum value of fitness function.
3. Fitness function- A function derived from objective function
4. Population size- A number of points in a search space used in parallel for computing is

called population, generally ranging from 30 to 200.
5. Constraints- Lower and upper bounds
6. Stopping criteria- it can be no. of iterations, or minimum value of error in fitness or

minimum improvement from previous iteration

LECTURE-2

Fig. Basic cycle of EA

Basic flow chart of EA:

The initial population is usually generated randomly in all EAs. The termination condition

may be a desired fitness function, maximum number of generations etc. In selection,

individuals with better fitness functions from generation „i' are taken to generate individuals

of „i+1‟th generation. New population (offspring) is created by applying recombination and

mutation to the selected individuals (parents). Recombination creates one or two new

individuals by swaping (crossing over) the genome of a parent with another. Recombined

individual is then mutated by changing a single element (genome) to create a new individual.
Finally, the new population is evaluated and the process is repeated. Each step is described in
more detail below with special reference to GA. GA was proposed by Davis E. Goldberg.

LECTURE-3

Special features of GA:

Encoding-
 Objects forming possible solution sets to the original problem is called phenotype and the
encoding (representation) of the individuals in the EA is called genotype. In GA each
possible solution is coded in to genetic space. The coding may be binary coding, real coding,
hexadecimal coding, value coding and tree coding.

 Binary coding:

If each design variable is given a string of length „l‟, and there are n such variables, then the

design vector will have a total string length of „nl‟. For example, let there are 3 design

variables and the string length be 4 (not necessarily fixed for all problems, depends on

accuracy in representing variable)for each variable. The variables are x1=4,x2=7 & x3=1.

Then the chromosome length is 12, where 4 bit in binary representing x1=0100 , x2=0111,

x3=0001 are genes. So each string/ chromosome represents a different solution.

 An individual consists a genotype and a fitness function. Fitness represents the quality of the
solution (normally called fitness function). It forms the basis for selecting the individuals and
thereby facilitates improvements.

Fig. Flow chart of GA

Decoding:

If xi
L

&

xi

U
correspond to 0000 to 0111 ; ni the bit length of coding decoded value xi will be

LECTURE-4

PARENT SELECTION:

 After fitness function evaluation, individuals are distinguished based on their quality.

According to Darwin's evolution theory the best ones should survive and create new offspring

for the next generation. There are many methods to select the best chromosomes.

1. Roulette wheel selection

2. Boltzmann selection

3. Tournament selection

4. Rank selection

5. Steady state selection

The first one is briefly described.

Roulette Wheel Selection: Parents are selected according to their fitness i.e., each individual

is selected with a probability proportional to its fitness value. In other words, depending on

the percentage contribution to the total population fitness, string is selected for mating to

form the next generation. This way, weak solutions are eliminated and strong solutions

survive to form the next generation. For example, consider a population containing four

strings shown in the Table 1. Each string is formed by concatenating four substrings which

represents variables a,b,c and d. Length of each string is taken as four bits. The first column

represents the possible solution in binary form. The second column gives the fitness values of

the decoded strings. The third column gives the percentage contribution of each string to the

total fitness of the population. Then by "Roulette Wheel" method, the probability of

candidate 1 being selected as a parent of the next generation is 28.09%. Similarly, the

probability that the candidates 2, 3, 4 will be chosen for the next generation are 19.59, 12.89

and 39.43 respectively. These probabilities are represented on a pie chart, and then four

numbers are randomly generated between 1 and 100. Then, the likeliness that the numbers

generated would fall in the region of candidate 2 might be once, whereas for candidate 4 it

might be twice and candidate 1 more than once and for candidate 3 it may not fall at all.

Thus, the strings are chosen to form the parents of the next generation.

The one with higher probability pi calculated is judged as per

where Fi the fitness and n is the number of chromosome.

Choice of Methods of selecting chromosomes to be parents depends on

1. Population diversity- good ones exploited but new areas are explored but slow

2. Selective pressure-better individuals are preferred but chance of getting local max/min

but fast

Generation:

Population of design vector obtained after one computation on all individuals.

Generation gap:

Proportion of individuals in the population that are replaced in each generation. It should be

increased to improve results.

Reproduction:

Generally after choosing a method of selection population with above average fitness

function in one generation are taken as parents and inserted in next population in

multiple(clones) so that good trait is transferred to child.

LECTURE-5

CROSSOVER:

 It is a recombination operator. Selection alone cannot introduce any new individuals into the

population, i.e., it cannot find new points in the search space. These are generated by

genetically-inspired operators, of which the most well known are crossover and mutation.

Types-
1. One-point

2. Two-point

3. Uniform

4. Arithmetic

5. Heuristic

6. Matrix

 In one point crossover, selected pair of strings is cut at some random position and their

segments are swapped to form new pair of strings.

Fig. One point crossover

In two-point scheme, there will be two break points in the strings that are randomly chosen.

At the break-point, the segments of the two strings are swapped so that new set of strings are

formed. For example, let us consider two 8-bit strings given by '10011101' and '10101011'.

Then according to one-point crossover, if a random crossover point is chosen after 3 bits from

left and segments are cut as shown below: 100 | 11101 101 | 01011 and the segments are

swapped to form 10001011 10111101 According to two-point crossover, if two crossover

points are selected as 100 | 11 | 101 101 | 01 | 011 Then after swapping both the extreme

segments, the resulting strings formed are 10001101 10111011 Crossover is not usually

applied to all pairs of individuals selected for mating. A random choice is made, where the

probability of crossover Pc being applied is typically between 0.6 and 0.9.

MUTATION:

 Mutation is applied to each child individually after crossover. This creates diversity. It

randomly alters each gene with a small probability Pm(generally not greater than 0.01).

Types-
1. Flip-bit

2. Boundary

3. Uniform

4. Non- Uniform

5. Gaussian

It injects a new genetic character into the chromosome by changing at random a bit in a string

depending on the probability of mutation. Example: 10111011 is mutated as 10111111 It is

seen in the above example that the sixth bit '0' is changed to '1'. Thus, in mutation process,

bits are changed from '1' to '0' or '0' to '1' at the randomly chosen position of randomly

selected strings. The mutation may be for one individual or a group.

Fig. Mutation bits shown in red

LECTURE-6

ADVANTAGES AND DISADVANTAGES OF EA:

EA can be efficiently used for highly complex problems with multi-objectivity, non-linearity

etc. It provides not only a single best solution, but the 2nd best, 3rd best and so on as

required. It gives quick approximate solutions. EA methods can very well incorporate with

other local search algorithms. There are some drawbacks also in using EA techniques. An

optimal solution cannot be ensured on using EA methods, which are usually known as

heuristic search methods. Convergence of EA techniques are problem oriented. Sensitivity

analysis should be carried out to find out the range in which the model is efficient. Also, the

implementation of these techniques requires good programming skill.

Differences and similarities between GA and other traditional methods:
Differences:

1. GA uses coding which discretizes search space even though function is continuous

2. A discrete function can be handled with no extra cost

3. Works with a population of points instead of single, so multiple optimal solutions can

be captured at a time, reducing no. of run of algorithm

Similarities:

1. Search direction in traditional algorithms is used to find new point, where as 2 points

are used to define search direction a in crossover in GA

2. Search direction is not fixed for all points, as mutation works in GA

New Variants of GA:

According to the encoding, selection, crossover or mutation methods and adaptive changing

of the probabilities with convergence many variants like continuous GA, binary GA, RCGA,

NSGA etc have been developed. In addition the new ones are

1. Messy GA

2. Parallel GA

3. Multiobjective GA

LECTURE-7

Issues for GA Parameter settings:

Choosing basic implementation issues:

1. Representation

2. Population size, mutation rate, ...

3. Selection, deletion policies

4. Crossover, mutation operators

5. Termination Criteria

6. Performance, scalability

7. Solution is only as good as the evaluation function (often hardest part)

Benefits of Genetic Agorithms

1. Concept is easy to understand

2. Modular, separate from application

3. Supports multi-objective optimization

4. Good for “noisy”environments

5. Always gives answer; answer gets better with time

6. Inherently parallel; easily distributed

7. Multiple ways to speed up and improve a GA-based application as knowledge about

problem domain is gained

8. Easy to exploit previous or alternate solutions

9. Flexible building blocks for hybrid applications

10. Substantial history and range of use

Shortcomings of GA:

1. Minimal deception problem- Some objective functions may be very difficult to optimize

by GA. Representing the solution accuracy depends on coding.

2. GA drift(Bias)- Loss of population diversity may seek suboptimal solution with a smaller

population size

3. Real time& online issues- It does not guarantee response time, which is vital in real time

issues. Works offline satisfactorily.

4. Computationally expensive and time consuming

5. Issues in representation of problem

6. Proper writing of fittness function

7. Proper values of size of population, crossover and mutation rate

8. Premature Convergence

9. No one mathematically perfect solution since problems of biological adaptation don't have

this issue

LECTURE-8 to 10

Applications of Genetic Algorithms:

1. Optimization and design

numerical optimization, circuit design, airplane design, factory scheduling, drug design,

network optimization

2. Automatic programming

evolving computer programs (e.g., for image processing), evolving cellular automata

3. Machine learning and adaptive control

robot navigation, evolution of rules for solving “expert”problems, evolution of neural

networks, adaptive computer security, adaptive user interfaces

4. Complex data analysis and time-series prediction

prediction of chaotic systems, financial-market prediction, protein-structure prediction

5. Scientific models of complex systems

economics, immunology, ecology, population genetics, evolution, cancer

References:

1. Chapter 7 J.S.R.Jang, C.T.Sun and E.Mizutani, “Neuro-Fuzzy and Soft

Computing”, PHI, 2004, Pearson Education 2004.

2. Chapter 8 & 9 S. Rajasekaran & GA Vijayalakshmi Pai “Neural Networks, Fuzzy
Logic, and Genetic Algorithms synthesis and application”, PHI

3. Internet sources

	blank595x841
	9326573163f3ef1ad7e74a0082535709e1ad8e8186f27a13adeb7e8482eebf6c.pdf

